蓝桥杯—— 算法训练 K好数 (动态规划)

问题描述

如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。

输入格式

输入包含两个正整数,K和L。

输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定

对于30%的数据,KL <= 106

对于50%的数据,K <= 16, L <= 10;

对于100%的数据,1 <= K,L <= 100。

#include <iostream>
#define mod 1000000007
using namespace std;

int main()
{
	int k, l;
	cin >> k >> l;
	__int64 dp[101][101] = { 0 }, sum = 0;

	for (int i = 1; i < k; i++)  //k进制中数字不超过k
		dp[1][i] = 1;    //长度为1 数字为i的数字个数都为1

	for (int i = 2; i <= l; i++)
	{
		for (int j = 0; j < k; j++)   //长度为i 结束字母为j
		{
			for (int m = 0; m < k; m++)  
			{
				if (m != j + 1 && m != j - 1)
				{
					//长度为i 结束字母为j 的数字个数 即在 长度为i-1的所有数字的末位加上一位
					//所以排除与末位数字相邻的情况
					dp[i][j] += dp[i - 1][m];  
					dp[i][j] %= mod;
				}
			}
		}
	}

	for (int i = 0; i < k; i++)
	{
		sum += dp[l][i];
		sum %= mod;
	}
	cout << sum;

	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值