问题描述
如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数。求L位K进制数中K好数的数目。例如K = 4,L = 2的时候,所有K好数为11、13、20、22、30、31、33 共7个。由于这个数目很大,请你输出它对1000000007取模后的值。
输入格式
输入包含两个正整数,K和L。
输出格式
输出一个整数,表示答案对1000000007取模后的值。
样例输入
4 2
样例输出
7
数据规模与约定
对于30%的数据,KL <= 106;
对于50%的数据,K <= 16, L <= 10;
对于100%的数据,1 <= K,L <= 100。
#include <iostream>
#define mod 1000000007
using namespace std;
int main()
{
int k, l;
cin >> k >> l;
__int64 dp[101][101] = { 0 }, sum = 0;
for (int i = 1; i < k; i++) //k进制中数字不超过k
dp[1][i] = 1; //长度为1 数字为i的数字个数都为1
for (int i = 2; i <= l; i++)
{
for (int j = 0; j < k; j++) //长度为i 结束字母为j
{
for (int m = 0; m < k; m++)
{
if (m != j + 1 && m != j - 1)
{
//长度为i 结束字母为j 的数字个数 即在 长度为i-1的所有数字的末位加上一位
//所以排除与末位数字相邻的情况
dp[i][j] += dp[i - 1][m];
dp[i][j] %= mod;
}
}
}
}
for (int i = 0; i < k; i++)
{
sum += dp[l][i];
sum %= mod;
}
cout << sum;
return 0;
}