全概率公式与贝叶斯公式

本文介绍了概率论中的全概率公式和贝叶斯公式,阐述了它们的理论与实际意义。全概率公式用于将复杂事件的概率拆分为多个互斥事件的概率之和,而贝叶斯公式则用于在已知结果的情况下更新原因事件的概率。通过新冠病毒检测的案例,解释了即使检测结果为阳性,患病概率也只有40%。这两个公式在统计推断和数据分析中起着关键作用。
摘要由CSDN通过智能技术生成

全概率公式与贝叶斯公式

全概率公式

给定有限或无限个事件 B 1 , B 2 , … B_1,B_2,\ldots B1,B2,,两两互斥且每次试验至少发生一个,即 B i B j = ∅ ( i ≠ j ) B_iB_j=\emptyset\left(i\neq j\right) BiBj=(i=j) B 1 + B 2 + … = Ω B_1+B_2+\ldots=\Omega B1+B2+=Ω(其中 Ω \Omega Ω为必然事件)。现考虑任意一个事件 A A A,利用 Ω \Omega Ω为必然事件且上述事件两两互斥则有:
P ( A ) = P ( A B 1 ) + P ( A B 2 ) + … P\left(A\right)=P\left(AB_1\right)+P\left(AB_2\right)+\ldots P(A)=P(AB1)+P(AB2)+
利用条件概率的定义:
P ( A B i ) = P ( B i ) P ( A | B i ) P\left(AB_i\right)=P\left(B_i\right)P\left(A\middle| B_i\right) P(ABi)=P(Bi)P(ABi)
从而得到了全概率公式:
P ( A ) = P ( B 1 ) P ( A | B 1 ) + P ( B 2 ) P ( A | B 2 ) + … P\left(A\right)=P\left(B_1\right)P\left(A\middle| B_1\right)+P\left(B_2\right)P\left(A\middle| B_2\right)+\ldots P(A)=P(B1)P(AB1)+P(B2)P(AB2)+

注:为什么全概率公式很重要?

所谓全概率公式就是将“全”部概率 P ( A ) P(A) P(A)划分成很多部分的和。理论和实用意义在于:在较复杂的情况下直接算 P ( A ) P(A) P(A)不容易,但是 A A A总是随着某个 B i B_i Bi出现,适当去构造这一组 B i B_i Bi往往可以简化计算。

另一种角度理解,把 B i B_i Bi看做导致事件 A A A发生的一种可能途径。对不同的途径, A A A发生的概率即条件概率 P ( A | B i ) P\left(A\middle| B_i\right) P(ABi)各不相同,而采取哪种途径却是随机的。直观理解:在这种机制下, A A A的综合概率 P ( A ) P(A) P(A)应该在最小的 P ( A | B i ) P\left(A\middle| B_i\right) P(ABi)和最大的 P ( A | B i ) P\left(A\middle| B_i\right) P(ABi)之间,也不一定是所有 P ( A ∣ B ) P(A|B) P(AB)的算术平均,因为各途径被使用的 P ( B i ) P\left(B_i\right) P(Bi)机会各不相同,也就是如上所示,应该是诸 P ( A | B i ) P\left(A\middle| B_i\right) P(ABi) P ( B i ) P\left(B_i\right) P(Bi)为权重的加权平均值。


贝叶斯公式

在全概率公式的条件下,有
P ( B i | A ) = P ( A B i ) / P ( A ) = P ( B i ) P ( A | B i ) / ∑ j P ( B j ) P ( A | B j ) P\left(B_i\middle|A\right)=P\left(AB_i\right)/P\left(A\right)=P\left(B_i\right)P\left(A\middle| B_i\right)/\sum_{j}{P\left(B_j\right)P\left(A\middle| B_j\right)} P(BiA)=P(ABi)/P(A)=P(Bi)P(ABi)/jP(Bj)P(ABj)
该公式就是概率论中著名的贝叶斯公式。

注:为什么贝叶斯公式很重要?

形式上看,贝叶斯公式实际上就是条件概率定义与全概率公式的简单推论,之所以著名,在于其现实意义的解释上:先看 P ( B 1 ) , P ( B 2 ) , … P\left(B_1\right),P\left(B_2\right),\ldots P(B1),P(B2),它是在没有进一步的信息,也就是不知道A是否发生的情况下,人们对 B 1 , B 2 , … B_1,B_2,\ldots B1,B2,发生可能性大小的认识,现在有了新的信息,也就是知道 A A A发生,人们对 B 1 , B 2 , … B_1,B_2,\ldots B1,B2,发生的可能性大小有了新的估价。

如果我们把事件 A A A看成“结果”,把事件 B 1 , B 2 , . . . B_1,B_2,... B1,B2,...看成导致这个结果的可能的“原因”,则利用形象地把全概率公式看做“由原因推结果”;而贝叶斯公式则恰好相反,其作用在于“有结果推原因”:现在有一个“结果” A A A已发生了,在众多可能的“原因”中,到底是哪一个导致了这个结果?


举例:新冠病毒在人口中的带病毒率为0.03,但是由于各种原因,携带病毒的不一定呈现阳性,不携带病毒的也可能呈现阳性,假定P(阳性|带病毒)=0.99,P(阴性|带病毒)=0.1,P(阳性|不带病毒)=0.05,P(阴性|不带病毒)=0.95,那么如果一个人检测出阳性,他患新冠的概率是多少?
分析:令携带新冠病毒为事件B_1,那么不携带就是事件B_2,此人阳性则是事件A,从而有
P ( B 1 ) = 0.03 , P ( B 2 ) = 0.97 , P ( A | B 1 ) = 0.99 , P ( A | B 2 ) = 0.05 P\left(B_1\right)=0.03,P\left(B_2\right)=0.97,P\left(A\middle| B_1\right)=0.99,P\left(A\middle| B_2\right)=0.05 P(B1)=0.03P(B2)=0.97P(AB1)=0.99P(AB2)=0.05
我们的目的是求出 P ( B 1 | A ) P\left(B_1\middle| A\right) P(B1A)的大小。
P ( B 1 | A ) = P ( A | B 1 ) P ( B 1 ) / [ P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) ] P\left(B_1\middle| A\right)=P\left(A\middle| B_1\right)P\left(B_1\right)/\left[P\left(A{|B}_1\right)P\left(B_1\right)+P\left(A{|B}_2\right)P\left(B_2\right)\right] P(B1A)=P(AB1)P(B1)/[P(AB1)P(B1)+P(AB2)P(B2)]
算出来的结果是40%,也就是说即使检测出阳性,也不一定患病,这在某种程度上与直觉矛盾。


Reference

[1]陈希孺.概率论与数理统计[M].中国科学技术大学出版社:合肥,2009:31-34.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值