数据倾斜处理

9 篇文章 0 订阅
6 篇文章 0 订阅

数据倾斜

----------------------

数据倾斜的处理思路

1. 数据倾斜产生原因

做数据运算的时候会涉及到,count distinct、group by、join on等操作,这些都会触发Shuffle动作。一旦触发Shuffle,所有相同key的值就会被拉到一个或几个Reducer节点上,容易发生单点计算问题,导致数据倾斜。

1.key分布不均匀

2.建表时考虑不周

关联字段的 数据规范不一致:①类型不一致 ②默认值不一致

例:假设我们有两张表:
user(用户信息表):userid,register_ip
ip(IP表):ip,register_user_cnt
这可能是两个不同的人开发的数据表。如果我们的数据规范不一致的话,会出现一种情况:
user表中的register_ip字段,如果获取不到这个信息,我们默认为null;
但是在ip表中,我们在统计这个值的时候,为了方便,我们把获取不到ip的用户,统一认为他们的ip为0。
两边其实都没有错的,但是一旦我们做关联了,这个任务会在做关联的阶段,也就是sql的on的阶段卡死。

3.业务数据激增

热门业务数据量巨增,导致整体group by的时候导致数据倾斜

例:北上深在11.11的时候的销售额巨增,如果直接group by可能导致数据倾斜

2.解决数据倾斜思路

很多数据倾斜的问题,都可以用和平台无关的方式解决,比如更好的数据预处理异常值的过滤等。因此,解决数据倾斜的重点在于对数据设计业务的理解,这两个搞清楚了,数据倾斜就解决了大部分了。

1.业务逻辑

从业务逻辑的层面上来优化数据倾斜:单独对Key进行处理(二次聚合) + 整合

11.11导致三个城市数据量激增的例子,我们可以单独对这三个城市来做count,单独做时可用两次MR,第一次打散计算,第二次再最终聚合计算。完成后和其它城市做整合。

2.程序层面

比如说在Hive中,经常遇到count(distinct)操作,这样会导致最终只有一个Reduce任务。

我们可以先group by,再在外面包一层count,就可以了。比如计算按用户名去重后的总用户量:

(1)优化前 只有一个reduce,先去重再count负担比较大:
select name,count(distinct name)from user;
​
(2)优化后
// 设置该任务的每个job的reducer个数为3个。Hive默认-1,自动推断。
set mapred.reduce.tasks=3;
// 启动两个job,一个负责子查询(可以有多个reduce),另一个负责count(1):
select count(1) from (select name from user group by name) tmp;

3.调参方面

Hadoop和Flink都自带了很多的参数和机制来调节数据倾斜,合理利用它们就能解决大部分问题。

4.***从业务和数据上解决数据倾斜

很多数据倾斜都是在数据的使用上造成的。我们举几个场景,并分别给出它们的解决方案。

1 有损的方法:找到异常数据,比如ip为0的数据,过滤掉
2 无损的方法:对分布不均匀的数据,单独计算
3 先对key做一层hash,先将数据随机打散让它的并行度变大,再汇集
4 数据预处理

----------------------

数据倾斜处理方案

1.使用Hive ETL预处理数据

(提前数据倾斜)

适用场景

导致数据倾斜的是Hive表。如果该Hive表中的数据本身很不均匀
(比如某个key对应了100万数据,其他key才对应了10条数据),
​
而且业务场景需要频繁使用Spark对Hive表执行某个分析操作,那么比较适合使用这种技术方案

实现思路

此时可以评估一下,是否可以通过Hive来进行数据预处理
(即通过Hive ETL预先对数据按照key进行聚合,或者是预先和其他表进行join),
​
然后在其他作业中针对的数据源就不是原来的Hive表了,而是预处理后的Hive表。
​
此时由于数据已经预先进行过聚合或join操作了,那么在其他作业中也就不需要使用原先的shuffle类算子/聚合等 这类操作了。

方案实现原理

其实在Hive ETL中进行group by或者join等shuffle操作时,还是会出现数据倾斜,导致Hive ETL的速度很慢。
​
​
我们只是把数据倾斜的发生提前到了Hive ETL中,避免Spark程序发生数据倾斜而已

方案优缺点

优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。
​
缺点:治标不治本,Hive ETL中还是会发生数据倾斜。

方案实践经验

在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,
而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。
​
将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,
而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。

项目实践经验

在美团·点评的交互式用户行为分析系统中使用了这种方案
​
该系统主要是允许用户通过Java Web系统提交数据分析统计任务,后端通过Java提交Spark作业进行数据分析统计。
要求Spark作业速度必须要快,尽量在10分钟以内,否则速度太慢,用户体验会很差。所以我们将有些Spark作业的shuffle操作提前到了Hive ETL中,从而让Spark直接使用预处理的Hive中间表,尽可能地减少Spark的shuffle操作,大幅度提升了性能,将部分作业的性能提升了6倍以上。

2.过滤少数导致倾斜的key

方案适用场景

如果发现导致倾斜的key就少数几个,而且对计算本身的影响并不大的话,那么很适合使用这种方案。
​
比如99%的key就对应10条数据,但是只有一个key对应了100万数据,从而导致了数据倾斜。

方案实现思路

如果我们判断那少数几个数据量特别多的key,对作业的执行和计算结果不是特别重要的话,那么干脆就直接过滤掉那少数几个key。
​
如果需要每次作业执行时,动态判定哪些key的数据量最多然后再进行过滤,那么可以使用sample算子对RDD进行采样,然后计算出每个key的数量,取数据量最多的key过滤掉即可。

方案实现原理

将导致数据倾斜的key给过滤掉之后,这些key就不会参与计算了,自然不可能产生数据倾斜。

方案优缺点

优点:实现简单,而且效果也很好,可以完全规避掉数据倾斜。
​
缺点:适用场景不多,大多数情况下,导致倾斜的key还是很多的,并不是只有少数几个。

方案实践经验

在项目中我们也采用过这种方案解决数据倾斜。
​
有一次发现某一天作业在运行的时候突然OOM了,追查之后发现,是Hive表中的某一个key在那天数据异常,导致数据量暴增。因此就采取每次执行前先进行采样,计算出样本中数据量最大的几个key之后,直接在程序中将那些key给过滤掉。

3.提高Shuffle算子的并行度

方案适用场景

如果我们必须要对数据倾斜迎难而上,那么建议优先使用这种方案,因为这是处理数据倾斜最简单的一种方案。

方案实现思路

在对RDD执行shuffle算子时,给shuffle算子传入一个参数,比如reduceByKey(1000),该参数就设置了这个shuffle算子执行时shuffle read task的数量,即spark.sql.shuffle.partitions,该参数代表了shuffle read task的并行度,默认是200,对于很多场景来说都有点过小。
​
Flink的聚合算子都会有可以设置其 算子并行度:sum() .setParallelism(xxx)

方案实现原理

增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。举例来说,如果原本有5个key,每个key对应10条数据,这5个key都是分配给一个task的,那么这个task就要处理50条数据。
​
而增加了shuffle read task以后,每个task就分配到一个key,即每个task就处理10条数据,那么自然每个task的执行时间都会变短了。
​
增加了并行度,使得 KeyBy时候的双重hash的时候进入到不同的并行度的概率加大

方案优缺点

优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。
​
缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。

方案实践经验

该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,
那么无论你的task/并行度数量增加到多少,这个对应着100万数据的key肯定还是会分配到一个task/并行度中去处理,因此注定还是会发生数据倾斜的。
​
所以这种方案只能说是在发现数据倾斜时尝试使用的第一种手段,尝试去用最简单的方法缓解数据倾斜而已,
或者是和其他方案结合起来使用。

4.**二次聚合(局部聚合+全局聚合)

方案适用场景

对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案。
​
对flink中的keyedProcess处理的算子有效

方案实现思路

这个方案的核心实现思路就是进行两阶段聚合:

第一次是局部聚合,先给每个key都打上一个随机数,比如10以内的随机数,此时原先一样的key就变成不一样的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就会变成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。
​
接着对打上随机数后的数据,执行reduceByKey等聚合操作,进行局部聚合,那么局部聚合结果,就会变成了(1_hello, 2) (2_hello, 2)。
​
然后将各个key的前缀给去掉,就会变成(hello,2)(hello,2),再次进行全局聚合操作,就可以得到最终结果了,比如(hello, 4)。

方案实现原理

将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task/并行度处理的数据分散到多个task/并行度上去做局部聚合,进而解决单个task/并行度处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。

方案优缺点

优点
对于聚合类的shuffle操作/groupby导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将性能提升数倍以上。
​
缺点
仅仅适用于聚合类的shuffle/groupby操作,适用范围相对较窄。如果是join类的操作,还得用其他的解决方案。

5.将reduce join转为map join

6.** 采样倾斜key并分拆join操作

方案适用场景

两个RDD/Hive表进行join的时候,如果数据量都比较大,无法采用“解决方案五”,那么此时可以看一下两个RDD/Hive表中的key分布情况。
​
如果出现数据倾斜,是因为其中某一个RDD/Hive表中的少数几个key的数据量过大,而另一个RDD/Hive表中的所有key都分布比较均匀,那么采用这个解决方案是比较合适的。

方案实现思路

对包含少数几个数据量过大的key,通过count(distinct key) / 二次group by统计出数据量大的key
​
然后将这几个key对应的数据从原来的表数据中拆分出来,形成一个单独的表,然后使用二次聚合处理即可

方案实现原理

对于join导致的数据倾斜,如果只是某几个key导致了倾斜,
可以将少数几个key分拆成独立数据,并附加随机前缀打散成n份去进行join,此时这几个key对应的数据就不会数据倾斜

方案优缺点

优点:对于join导致的数据倾斜,如果只是某几个key导致了倾斜,采用该方式可以用最有效的方式打散key进行join。而且只需要针对少数倾斜key对应的数据进行扩容n倍,不需要对全量数据进行扩容。避免了占用过多内存。
​
缺点:如果导致倾斜的key特别多的话,比如成千上万个key都导致数据倾斜,那么这种方式也不适合。

7.使用随机前缀和扩容RDD进行join

方案适用场景

如果在进行join操作时,RDD中有大量的key导致数据倾斜,
那么进行分拆key也没什么意义,此时就只能使用最后一种方案来解决问题了。

方案实现思路

该方案的实现思路基本和“解决方案六”类似,首先查看RDD/Hive表中的数据分布情况,找到那个造成数据倾斜的RDD/Hive表,比如有多个key都对应了超过1万条数据。
​
然后将每条数据都打上一个n以内的随机前缀。
​
同时对另外一个正常的表数据进行扩容,将每条数据都扩容成n条数据,扩容出来的每条数据都依次打上一个0~n的前缀。
进行join即可

方案实现原理

将原先一样的key通过附加随机前缀变成不一样的key,然后就可以将这些处理后的“不同key”分散到多个task/reduce中去处理,而不是让一个task/reduce处理大量的相同key。
​
该方案与“解决方案六”的不同之处就在于,上一种方案是尽量只对少数倾斜key对应的数据进行特殊处理,由于处理过程需要扩容RDD/表,因此上一种方案扩容RDD/表后对内存的占用并不大;
​
而这一种方案是针对有大量倾斜key的情况,没法将部分key拆分出来进行单独处理,因此只能对整个RDD/表进行数据扩容,对内存资源要求很高。

方案优缺点

优点:对join类型的数据倾斜基本都可以处理,而且效果也相对比较显著,性能提升效果非常不错。
​
缺点:该方案更多的是缓解数据倾斜,而不是彻底避免数据倾斜。而且需要对整个RDD/表进行扩容,对内存资源要求很高。

方案实践经验

曾经开发一个数据需求的时候,发现一个join导致了数据倾斜。
优化之前,作业的执行时间大约是60分钟左右;
使用该方案优化之后,执行时间缩短到10分钟左右,性能提升了6倍。

8.多种方案组合使用

在实践中发现,很多情况下,如果只是处理较为简单的数据倾斜场景,那么使用上述方案中的某一种基本就可以解决。但是如果要处理一个较为复杂的数据倾斜场景,那么可能需要将多种方案组合起来使用。
​
比如说,我们针对出现了多个数据倾斜环节的Spark作业,可以先运用解决方案一HiveETL预处理和过滤少数导致倾斜的k,预处理一部分数据,并过滤一部分数据来缓解;
​
其次可以对某些shuffle操作提升并行度,优化其性能;
​
最后还可以针对不同的聚合或join操作,选择一种方案来优化其性能。
​
当对这些方案的思路和原理都透彻理解之后,在实践中根据各种不同的情况,灵活运用多种方案,来解决自己的数据倾斜问题。

----------------------

HIve

理论:hive中数据倾斜排查的方式:

hive中数据倾斜的原因和处理方式:
1.定位SQL语句,判断数据倾斜可能的原因:①null空值 ②关联字段类型不匹配
3.根据SQL判断可能是哪种SQL原因产生的数据倾斜:
①group by类型的数据倾斜 
    单key:加随机数,双重聚合,配置参数,双重聚合 set hive.groupby.skewindata = true;
          过滤出这个Key单独处理
    多key:增加Reducer个数,一定程度上解决问题
          自定义分区器
          加随机数,双重聚合,配置参数,双重聚合 set hive.groupby.skewindata = true;         
②join on关联产生的数据倾斜
    大表JOIN小表   mapJoin     避免了Reducer
    大表JOIN大表   A表加随机数   B表扩容随机数的个数倍  聚合
        A   concat(id,'_',随机数[1,2,3]) 加随机数
        B                               扩容随机数的个数倍
                concat(id,'_',1)
                union all
                concat(id,'_',2)
                union all
                concat(id,'_',3)
​

实际遇见hive数据倾斜处理方式:

1.对表的数据的key进行 null值诊断  count(distinct keyxxx),如果null空值过多,
        采取 ①直接删除 null值 ②添加随机数打散
2.定位日志查询以及Yarn查询 Reduce个数,适当增加 Reduce个数
3.(join on关联类型)数据倾斜时进行负载均衡:set hive.groupby.skewindata = true
4.将关联条件处 字段进行检查是否需要强转,cast(xxx as yyy)
5.可能是 字段类型的数值超限,例:bigint的最大存储范围为:-2^63 到 2^63-1 
    如果数据量大的时候进行join,可能产生 亿*亿*亿*... 超出字段类型范围
    解决方式:将bigint类型转换为string类型进行 join =》 cast(xx as string)

----------------------

Sqoop

数据倾斜可调整参数

Sqoop在导入数据的时候数据倾斜时,可通过调整的参数:
    ①Sqoop参数: split-by:按照自增主键来切分表的工作单元。
    ②num-mappers:启动N个map来并行导入数据,默认4个;

处理:

①split-by指定按照自增主键切分数据
②通过num-mappers增加map个数

----------------------

hadoop

hadoop中的数据倾斜表现:

1.有一个多几个Reduce卡住,卡在99.99%,一直不能结束。
2.各种container报错OOM
3.异常的Reducer读写的数据量极大,至少远远超过其它正常的Reducer
4.伴随着数据倾斜,会出现任务被kill等各种诡异的表现。

----------------------

Flink

keyedProcess算子容易发生数据倾斜

原因:(keyby:双重hash)keyProcess的分区策略:

 KeyGroupRangeAssignment的assignToKeyGroup 这个api决定的分区策略。
 简而言之:你的key,经过hash再hash之后,除以分区数取余得到数据的分区号。
 所以如果你的key本身分布就不是均匀的,那么大概率会出现倾斜问题。

1.影响

(1)单点问题
   数据集中在某些分区上(Subtask),导致数据严重不平衡。
​
(2)GC 频繁
   过多的数据集中在某些 JVM(TaskManager),使得JVM 的内存资源短缺,导致频繁 GC。
​
(3)吞吐下降、延迟增大
   数据单点和频繁 GC 导致吞吐下降、延迟增大。
​
(4)系统崩溃
   严重情况下,过长的 GC 导致 TaskManager 失联,系统崩溃

2.Flink 定位数据倾斜

步骤1:定位反压

定位反压有2种方式:Flink Web UI 自带的反压监控(直接方式)、Flink Task Metrics(间接方式)。

通过监控反压的信息,(主要观察keyedProcess算子)可以获取到数据处理瓶颈的 Subtask。

步骤2:确定数据倾斜

Flink Web UI 自带Subtask 接收和发送的数据量。当 Subtasks 之间处理的数据量有较大的差距,则该 Subtask 出现数据倾斜。

3.Flink 处理数据倾斜

从source -> transform -> sink寻找原因和解决方法

场景一:数据源 source 消费不均匀

解决思路:通过调整并发度,解决数据源消费不均匀或者数据源反压的情况。
例如kafka数据源,可以调整 KafkaSource 的并发度解决消费不均匀。
调整并发度的原则:KafkaSource 并发度与 kafka 分区数是一样的,或者 kafka 分区数是KafkaSource 并发度的整数倍。

场景二:key 分布不均匀

key 分布不均匀的无统计场景,例如上游数据分布不均匀,使用keyBy来打散数据。

解决思路:

1.keyProcess的分区数选择为质数,因为质数取余更均匀。
​
2.二次聚合:通过添加随机前缀,打散 key 的分布,使得数据不会集中在几个 Subtask。
​
!!!最优的解决方案,是你按权重去对key进行分配,这种方案需要你对key的权重比较了解,再针对性使用例如switch这种方式去给对应的权重数据分配指定的key。

flinkSQL的二次聚合实现:(rand()函数使用见HiveFuncion.md)

SELECT id,sum(sum_level) sumLevel
FROM
(
    SELECT nk,sum(`level`) sum_level,id FROM 
    (
    select id,`level`,concat(id,'-',ROUND(10*RAND(),0)) nk
    FROM
    test
    ) t1
    GROUP BY id,nk
) t2
GROUP BY id
  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值