红黑树
红黑树(Red Black Tree)是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。红黑树和AVL树类似,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。
它虽然是复杂的,但它的最坏情况的运行时间也是非常良好的,并且在实践中是高效的:它可以在 O(logn) 时间内做查找,插入和删除,这里的 n 是数中元素的数目。
红黑树的性质
红黑树是每个结点都带有颜色属性的二叉查找树,颜色是红色或黑色。在二叉查找树强制一般要求以外,对于任何有效的红黑树我们增加了如下的额外要求:
- 性质一:每个结点是红色或黑色。
- 性质二:根结点是黑色。
- 性质三:每个叶节点(哨兵结点)nil 是黑色。
- 性质四:每个红色结点的两个子结点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色结点)
- 性质五:从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点。
这些约束强制了红黑树的关键性质:从根结点到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这个树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求于树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。
是性质三导致路径上不能有两个连续的红色结点确保了这个结果。最短的可能路径都是黑色结点,最长的可能路径有交替的红色和黑色结点。因为根据性质四所有最长的路径都有相同数目的黑色结点,这就表明了没有路径能多于任何其他路径的两倍长。
RB树的结构设计
enum ColorType
{
RED,
BLACK;
}
class RBNode{
private RBNode leftChild;
private RBNode rightChild;
private RBNode parent;
private int data;
private ColorType color; //RED BLACK
public RBNode(){
leftChild = null;
parent = null;
rightChild = null;
color = ColorType.RED;
data = 0;
}
public RBNode(int data){
leftChild = null;
parent = null;
rightChild = null;
color = ColorType.RED;
this.data = data;
}
public RBNode(int data,RBNode parent){
leftChild = null;
this.parent = parent;
rightChild = null;
color = ColorType.RED;
this.data = data;
}
public RBNode(int data,RBNode parent,RBNode leftChild,RBNode rightChild){
this.leftChild = leftChild;
this.parent = parent;
this.rightChild = rightChild;
color = ColorType.RED;
this.data = data;