给定长度分别为 m 和 n 的两个数组,其元素由 0-9 构成,表示两个自然数各位上的数字。现在从这两个数组中选出 k (k <= m + n) 个数字拼接成一个新的数,要求从同一个数组中取出的数字保持其在原数组中的相对顺序。
求满足该条件的最大数。结果返回一个表示该最大数的长度为 k 的数组。
说明: 请尽可能地优化你算法的时间和空间复杂度。
示例 1:
输入:
nums1 = [3, 4, 6, 5]
nums2 = [9, 1, 2, 5, 8, 3]
k = 5
输出:
[9, 8, 6, 5, 3]
示例 2:
输入:
nums1 = [6, 7]
nums2 = [6, 0, 4]
k = 5
输出:
[6, 7, 6, 0, 4]
示例 3:
输入:
nums1 = [3, 9]
nums2 = [8, 9]
k = 3
输出:
[9, 8, 9]
思路:
假设最大子序列中,包含来自nums1的s个元素和来自nums2的k-s个元素,
那么可以通过反证法证明,来自nums1的s个元素,构成了nums1的长度为s的最大子序列;来自nums2的k-s个元素,构成了nums2的长度为k-s的最大子序列。
因此,可以首先分别求出nums1中长度为s的最大子序列,和nums2中长度为k-s的最大子序列,然后求它们归并起来的最大子序列的长度,最后对一切可能的s求最大值。
代码:
class Solution {
public:
vector<int> maxNumber(vector<int>& nums1, vector<int>& nums2, int k) {
vector<int> res(k, 0);
int n = nums1.size(), m = nums2.size();
// 假设有最大子序列中有s个元素来自nums1,对所有可能的s值遍历
for (int s=max(0, k-m); s<=min(k, n); s++){
vector<int> temp;
int i = 0, j = 0;
// nums1中长度为s的最大子序列
vector<int> temp1 = maxKsequence(nums1, s);
// nums2中长度为k-s的最大子序列
vector<int> temp2 = maxKsequence(nums2, k-s);
// 对两个子序列进行归并
// lexicographical_compare:比较两个序列的字典序大小
auto iter1 = temp1.begin(), iter2 = temp2.begin();
while (iter1 != temp1.end() || iter2 != temp2.end()){
temp.push_back(lexicographical_compare(iter1, temp1.end(), iter2, temp2.end()) ? *iter2++ : *iter1++);
}
// 如果归并后的最大子序列大于目前已找到的最大子序列,则更新解
res = lexicographical_compare(res.begin(), res.end(), temp.begin(), temp.end()) ? temp : res;
}
return res;
}
// 求数组v的长度为k的最大子序列
vector<int> maxKsequence(vector<int> v, int k){
int n = v.size();
if (n <= k)
return v;
vector<int> res;
int pop = n-k;
for (int i=0; i<n; i++){
while(!res.empty() && v[i]>res.back() && pop-->0)
res.pop_back();
res.push_back(v[i]);
}
res.resize(k);
return res;
}
};
作者:Gorilla
链接:https://leetcode-cn.com/problems/create-maximum-number/solution/cshou-xian-qiu-jie-zi-wen-ti-zai-he-bing-zi-wen-ti/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。