农场派对题解

农场派对


题目描述
寒假到了,N头牛都要去参加一场在编号为X(1≤X≤N)的牛的农场举行的派对(1≤N≤1000),农场之间有M(1≤M≤100000)条有向路,每条路长Ti(1≤Ti≤100)。
每头牛参加完派对后都必须回家,无论是去参加派对还是回家,每头牛都会选择最短路径,求这N头牛的最短路径(一个来回)中最长的一条路径长度。
输入
第一行三个整数N,M, X;
第二行到第M+1行:每行有三个整数Ai,Bi, Ti ,表示有一条从Ai农场到Bi农场的道路,长度为Ti。

输出
一个整数,表示最长的最短路得长度。

样例输入

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

样例输出

10

根据输入建图


这是一道最短路问题,可以用Dijkstra、spfa等方法来做

题中除了编号为X的牛以外每头牛有两个动作:1.去参加派对,2.回家。

spfa算法可以找到从一个点出发到其他点的最短距离,这可以解决题目中所要求的 参加派对 的操作,那如何解决 回家 的要求呢?
我们可以使用建立反向图来解决问题(例如将3→4建图建成4→3),建立完反向图再跑一遍spfa就能求编号X的点到其他点的最短距离,这不就是我们想要的 回家 操作吗?

总结一下就是用正向图跑一遍spfa求出除了X牛的各个牛参加派对的最短距离,再用反向图跑一遍spfa求出除了X牛的各个牛回家的最短距离,相加就能找出答案啦。


下面是代码

#include<bits/stdc++.h>
using namespace std;

struct edge
{
	int v,w;
};
vector<edge>e[3][1010];//动态数组存边 
queue<int>q;//队列 
int n,m,l,f[3][1010],ans;//f数组表示在正向图和反向图中终点到各点最短距离
bool vis[1010];//vis数组表示各点是否在队列中 

void spfa(int k)//k=1时正向图,k=2时反向图 
{
	memset(vis,0,sizeof vis);//初始化false 
	vis[l]=true;
	f[k][l]=0;
	q.push(l);
	while(!q.empty())
	{
		int now=q.front();
		q.pop();
		vis[now]=false;
		for(int i=0;i<e[k][now].size();i++)//遍历从now点出发的各边 
		{
			int v=e[k][now][i].v,w=e[k][now][i].w;
			if(f[k][v]>f[k][now]+w)
			{
				f[k][v]=f[k][now]+w;
				if(!vis[v])
				{
					vis[v]=true;
					q.push(v);
				}
			}
		}
	}
}

int main(){
	cin>>n>>m>>l;
	memset(f,0x3f3f3f,sizeof f);
	for(int i=1;i<=m;i++)
	{
		int u,v,w;
		scanf("%d %d %d",&u,&v,&w);
		edge cmp;
		cmp.v=v;
		cmp.w=w;
		e[1][u].push_back(cmp);//存正向图 
		cmp.v=u;
		e[2][v].push_back(cmp);//存反向图 
	}
	spfa(1);//跑正向图 
	spfa(2);//跑反向图 
	for(int i=1;i<=n;i++)
	{
		//if(i==l)continue;
		ans=max(f[1][i]+f[2][i],ans);//找最长的 
	}
	cout<<ans;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值