农场派对
题目描述
寒假到了,N头牛都要去参加一场在编号为X(1≤X≤N)的牛的农场举行的派对(1≤N≤1000),农场之间有M(1≤M≤100000)条有向路,每条路长Ti(1≤Ti≤100)。
每头牛参加完派对后都必须回家,无论是去参加派对还是回家,每头牛都会选择最短路径,求这N头牛的最短路径(一个来回)中最长的一条路径长度。
输入
第一行三个整数N,M, X;
第二行到第M+1行:每行有三个整数Ai,Bi, Ti ,表示有一条从Ai农场到Bi农场的道路,长度为Ti。
输出
一个整数,表示最长的最短路得长度。
样例输入
4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3
样例输出
10
这是一道最短路问题,可以用Dijkstra、spfa等方法来做
题中除了编号为X的牛以外每头牛有两个动作:1.去参加派对,2.回家。
spfa算法可以找到从一个点出发到其他点的最短距离,这可以解决题目中所要求的 参加派对 的操作,那如何解决 回家 的要求呢?
我们可以使用建立反向图来解决问题(例如将3→4建图建成4→3),建立完反向图再跑一遍spfa就能求编号X的点到其他点的最短距离,这不就是我们想要的 回家 操作吗?
总结一下就是用正向图跑一遍spfa求出除了X牛的各个牛参加派对的最短距离,再用反向图跑一遍spfa求出除了X牛的各个牛回家的最短距离,相加就能找出答案啦。
下面是代码
#include<bits/stdc++.h>
using namespace std;
struct edge
{
int v,w;
};
vector<edge>e[3][1010];//动态数组存边
queue<int>q;//队列
int n,m,l,f[3][1010],ans;//f数组表示在正向图和反向图中终点到各点最短距离
bool vis[1010];//vis数组表示各点是否在队列中
void spfa(int k)//k=1时正向图,k=2时反向图
{
memset(vis,0,sizeof vis);//初始化false
vis[l]=true;
f[k][l]=0;
q.push(l);
while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=false;
for(int i=0;i<e[k][now].size();i++)//遍历从now点出发的各边
{
int v=e[k][now][i].v,w=e[k][now][i].w;
if(f[k][v]>f[k][now]+w)
{
f[k][v]=f[k][now]+w;
if(!vis[v])
{
vis[v]=true;
q.push(v);
}
}
}
}
}
int main(){
cin>>n>>m>>l;
memset(f,0x3f3f3f,sizeof f);
for(int i=1;i<=m;i++)
{
int u,v,w;
scanf("%d %d %d",&u,&v,&w);
edge cmp;
cmp.v=v;
cmp.w=w;
e[1][u].push_back(cmp);//存正向图
cmp.v=u;
e[2][v].push_back(cmp);//存反向图
}
spfa(1);//跑正向图
spfa(2);//跑反向图
for(int i=1;i<=n;i++)
{
//if(i==l)continue;
ans=max(f[1][i]+f[2][i],ans);//找最长的
}
cout<<ans;
return 0;
}