题目链接:https://codeforc.es/contest/1284/problem/B
A sequence a=[a1,a2,…,al] of length l has an ascent if there exists a pair of indices (i,j) such that 1≤i<j≤l and ai<aj. For example, the sequence [0,2,0,2,0] has an ascent because of the pair (1,4), but the sequence [4,3,3,3,1] doesn’t have an ascent.
Let’s call a concatenation of sequences p and q the sequence that is obtained by writing down sequences p and q one right after another without changing the order. For example, the concatenation of the [0,2,0,2,0] and [4,3,3,3,1] is the sequence [0,2,0,2,0,4,3,3,3,1]. The concatenation of sequences p and q is denoted as p+q.
Gyeonggeun thinks that sequences with ascents bring luck. Therefore, he wants to make many such sequences for the new year. Gyeonggeun has n sequences s1,s2,…,sn which may have different lengths.
Gyeonggeun will consider all n2 pairs of sequences sx and sy (1≤x,y≤n), and will check if its concatenation sx+sy has an ascent. Note that he may select the same sequence twice, and the order of selection matters.
Please count the number of pairs (x,y) of sequences s1,s2,…,sn whose concatenation sx+sy contains an ascent.
Input
The first line contains the number n (1≤n≤100000) denoting the number of sequences.
The next n lines contain the number li (1≤li) denoting the length of si, followed by li integers si,1,si,2,…,si,li (0≤si,j≤106) denoting the sequence si.
It is guaranteed that the sum of all li does not exceed 100000.
Output
Print a single integer, the number of pairs of sequences whose concatenation has an ascent.
Examples
input
5
1 1
1 1
1 2
1 4
1 3
output
9
input
3
4 2 0 2 0
6 9 9 8 8 7 7
1 6
output
7
input
10
3 62 24 39
1 17
1 99
1 60
1 64
1 30
2 79 29
2 20 73
2 85 37
1 100
output
72
题意
给出 n 个数列,求有几种两个数列合起来之后有上升序列(数列可以从左结合也可以从右结合)
分析
我们可以反向先求出结合后不存在上升序列的情况的数量,然后所有情况减去这个数量就是答案。
先分别存数列的最小值和最大值,然后将最小值升序排序,遍历最大值,再用二分就能找出最小值大于最大值的数量,即无上升序列的情况的数量。
代码
#include<bits/stdc++.h>
using namespace std;
int n;
int l;
int a[1000007];
int minn[1000007],maxn[1000007],cnt;
int cmp(int x,int y)
{
return x > y;
}
int main()
{
scanf("%d",&n);
long long ans = 0;
for(int i=1;i<=n;i++)
{
scanf("%d",&l);
int flag = 0;
for(int j=1;j<=l;j++)
{
scanf("%d",&a[j]);
if(j == 1)
continue;
if(a[j] > a[j - 1]) flag = 1;
}
if(flag == 0)
{
minn[++cnt] = a[l];
maxn[cnt] = a[1];
}
}
sort(minn + 1, minn + 1 + cnt);
for(int i=1;i<=cnt;i++)
{
int pos = lower_bound(minn + 1, minn + 1 + cnt, maxn[i]) - minn - 1;
ans += cnt - pos;
}
printf("%lld",1ll * n * n - ans);
return 0;
}