索引概述
定义:索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足 特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
简单点说就是一个提高MySQL查询效率的数据结构,MySQL中一般是使用B+树来实现的
举个例子方便理解,假设有这样一张表,我们要执行的SQL语句是这样的
select * from user where age = 45;
如果没有使用索引的话就得遍历表中的全部数据,这样效率就非常的慢,那么有索引的情况,以二叉树为例的话就如图所示,可以看到只遍历了三个节点,效率大大提高了。
但是MySQL中用的肯定不会是二叉树,如果使用二叉树,那么树的高度就太高了,十分影响查询的效率,而且极端情况喜爱二叉树会变成一个单向链表如图所示,所以MySQL使用的是B+树。
索引结构
B-Tree
在说明B+Tree之前,先来了解一下B-Tree的结构方便理解,如果要构建一颗B-Tree的话就要先确定这棵树的颗最大度数(max-degree),这里以最大颗粒度为5的B-Tree为例,最大颗粒度为5的话,那么就表示这棵树的节点有五个指针指向该节点的叶子结点,那么就是每个节点存储4个key,如图所示
可以看到每个节点中都是有五个指针,指向对应的区间,例如根节点中20左边的指针就是指向小于20的节点,20~30之间的指针就是指向20~30这个区间的节点以此类推……
B-Tree的构架过程也可以简单说一下,假如添加了四个key进入节点中,节点中的key会从小到大进行排序,如果再要添加第五个key,则会在排序后将这五个key的中间的key也就是第三个key抽取到上一级的节点中去,如图所示,先添加了四个key然后再添加1200的时候则中间的key也就是0345抽取到上一级去了。
- 5阶的B树,每一个节点最多存储4个key,对应5个指针。
- 一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
- 在B树中,非叶子节点和叶子节点都会存放数据。
B+Tree
既然B-Tree都可以实现索引的高效查询了,那么为什么还要使用B+Tree呢?可以将B+Tree看成是B-Tree的puls版,和B-Tree的思路基本是一样的,但是在存储方式上做了升级。
一颗B+Tree的示意图如下,可以看到全部数据都存储到了叶子节点当中,这样就节省了中间节点的空间,属于是用时间换空间了,为什么效率不如B-Tree呢?举个例子,如果我要查16,那么我查到第二层就可以返回数据了,但是B+Tree的话就得再查询一层,所有时间上确实不如B-Tree但是相差不大。
- 所有的数据都会出现在叶子节点。
- 叶子节点形成一个单向链表。
- 非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。
MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点 的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。

Hash
MySQL中除了支持B+Tree索引,还支持一种索引类型---Hash索引。
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。如图所示,就是将name进行hash运算后映射到对应的槽位上
但是可能会出现这种情况:两个不同的name映射到了同一个hash槽中,这就称之为hash冲突,解决hash冲突主要是通过链表这种数据结构,将同一个hash槽中的key用指针相连形成一个链表。
总结一下hash这种索引的特点:
- Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,...)
- 无法利用索引完成排序操作
- 查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+tree索引
为什么MySQL选择B+Tree来实现索引?
- 相对于二叉树,层级更少,搜索效率高;
- 对于B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低;
- 对于hash索引,B+Tree支持范围匹配及排序操作
索引分类
常见索引

聚集索引&二级索引
在MySQL中使用的索引一般可以分为两种:聚簇索引和二级索引
二者最显著的区别就是局促索引的B+Tree中叶子节点的数据存储的是一行的数据。而二级索引的叶子结点中存储的是主键id。
这也就意味着二级索引如果没有查询到想要的数据还得通过主键id找到对应的row数据,再返回。这一过程被称之为回表查询,回表查询会对性能有一点的影响。
聚集索引选取规则:
- 如果存在主键,主键索引就是聚集索引。如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
- 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。
索引语法
对所有有一定的了解了之后,就可以看一下索引对应的语法了
1、创建索引
CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (
index_col_name,... ) ;
2、查看索引
SHOW INDEX FROM table_name ;
3、删除索引
DROP INDEX index_name ON table_name ;
这样看可能还是不够明显,这里用一张表来演示一下,这是对应的SQL语句
create table tb_user(
id int primary key auto_increment comment '主键',
name varchar(50) not null comment '用户名',
phone varchar(11) not null comment '手机号',
email varchar(100) comment '邮箱',
profession varchar(11) comment '专业',
age tinyint unsigned comment '年龄',
gender char(1) comment '性别 , 1: 男, 2: 女',
status char(1) comment '状态',
createtime datetime comment '创建时间'
) comment '系统用户表';
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('吕布', '17799990000', 'lvbu666@163.com', '软件工程', 23, '1', '6', '2001-02-02 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('曹操', '17799990001', 'caocao666@qq.com', '通讯工程', 33, '1', '0', '2001-03-05 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('赵云', '17799990002', '17799990@139.com', '英语', 34, '1', '2', '2002-03-02 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('孙悟空', '17799990003', '17799990@sina.com', '工程造价', 54, '1', '0', '2001-07-02 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('花木兰', '17799990004', '19980729@sina.com', '软件工程', 23, '2', '1', '2001-04-22 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('大乔', '17799990005', 'daqiao666@sina.com', '舞蹈', 22, '2', '0', '2001-02-07 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('露娜', '17799990006', 'luna_love@sina.com', '应用数学', 24, '2', '0', '2001-02-08 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('程咬金', '17799990007', 'chengyaojin@163.com', '化工', 38, '1', '5', '2001-05-23 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('项羽', '17799990008', 'xiaoyu666@qq.com', '金属材料', 43, '1', '0', '2001-09-18 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('白起', '17799990009', 'baiqi666@sina.com', '机械工程及其自动化', 27, '1', '2', '2001-08-16 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('韩信', '17799990010', 'hanxin520@163.com', '无机非金属材料工程', 27, '1', '0', '2001-06-12 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('荆轲', '17799990011', 'jingke123@163.com', '会计', 29, '1', '0', '2001-05-11 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('兰陵王', '17799990012', 'lanlinwang666@126.com', '工程造价', 44, '1', '1', '2001-04-09 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('狂铁', '17799990013', 'kuangtie@sina.com', '应用数学', 43, '1', '2', '2001-04-10 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('貂蝉', '17799990014', '84958948374@qq.com', '软件工程', 40, '2', '3', '2001-02-12 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('妲己', '17799990015', '2783238293@qq.com', '软件工程', 31, '2', '0', '2001-01-30 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('芈月', '17799990016', 'xiaomin2001@sina.com', '工业经济', 35, '2', '0', '2000-05-03 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('嬴政', '17799990017', '8839434342@qq.com', '化工', 38, '1', '1', '2001-08-08 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('狄仁杰', '17799990018', 'jujiamlm8166@163.com', '国际贸易', 30, '1', '0', '2007-03-12 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('安琪拉', '17799990019', 'jdodm1h@126.com', '城市规划', 51, '2', '0', '2001-08-15 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('典韦', '17799990020', 'ycaunanjian@163.com', '城市规划', 52, '1', '2', '2000-04-12 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('廉颇', '17799990021', 'lianpo321@126.com', '土木工程', 19, '1', '3', '2002-07-18 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('后羿', '17799990022', 'altycj2000@139.com', '城市园林', 20, '1', '0', '2002-03-10 00:00:00');
INSERT INTO itcast.tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('姜子牙', '17799990023', '37483844@qq.com', '工程造价', 29, '1', '4', '2003-05-26 00:00:00');
数据库表准备好了之后就可以完成下面的需求了:
name字段为姓名字段,该字段的值可能会重复,为该字段创建索引。
CREATE INDEX idx_user_name ON tb_user(name);
phone手机号字段的值,是非空,且唯一的,为该字段创建唯一索引。
CREATE UNIQUE INDEX idx_user_phone ON tb_user(phone);
为profession、age、status创建联合索引,联合索引的顺序也很重要,后面会说到。
CREATE INDEX idx_user_pro_age_sta ON tb_user(profession,age,status);
为email建立合适的索引来提升查询效率。
CREATE INDEX idx_email ON tb_user(email);
SQL性能分析
使用下面的指令可以查看当前数据库增删改查的访问频次
-- session 是查看当前会话 ;
-- global 是查询全局数据 ;
SHOW GLOBAL STATUS LIKE 'Com_______';
对应的查询结果如下
那么通过查询SQL的执行频次,我们就能够知道当前数据库到底是增删改为主,还是查询为主。 那假 如说是以查询为主,我们又该如何定位针对于那些查询语句进行优化呢? 次数我们可以借助于慢查询日志。
接下来,就来介绍一下MySQL中的慢查询日志。
慢日志查询
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。
MySQL的慢查询日志默认没有开启,我们可以查看一下系统变量 slow_query_log。
我们需要再MySQL的配置文件中开启慢日志查询
# 开启MySQL慢日志查询开关
slow_query_log=1
# 设置慢日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
long_query_time=2
然后重启一下MySQL
docker restart 容器名称 or 容器id
这样就就可以自动记录查询时间超过2s的慢查询了
profile设置
show profiles 能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。通过have_profiling
参数,能够看到当前MySQL是否支持profile操作:
SELECT @@have_profiling ;
可以看到当前MySQL是支持profile操作的,但是开关是关闭的。可以通过set语句在session/global级别开启profiling:SET profiling = 1;
我们就可以执行一系列业务操作后,通过如下指令查看执行的耗时:
-- 查看每一条SQL的耗时基本情况
show profiles;
-- 查看指定query_id的SQL语句各个阶段的耗时情况
show profile for query query_id;
-- 查看指定query_id的SQL语句CPU的使用情况
show profile cpu for query query_id;
结果如图所示
explain命令
在执行的SELECT 语句前面加上explain或者DESC命令可以获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序。
语法如下:
-- 直接在select语句之前加上关键字 explain / desc
EXPLAIN SELECT 字段列表 FROM 表名 WHERE 条件 ;
可以得到如下的输出
对应的字段含义如下
索引使用
验证索引效率
都知道索引很快,但是到底有多快呢?这里就用一个1000w数据的查询来举例
在使用索引之前的查询:
使用索引优化之后的查询:
可以看到提升十分的明显,根本就不是一个数量级了
单列索引和联合索引
单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列
注意:当使用and连接两个单列索引字段的时候会只会选择一个索引进行查询,另一个则需要进行回表查询,但是如果这两个字段都是联合索引中的字段,那么就可以直接得到结果,联合索引的结构示意图如图所示
最左前缀法则
如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。
举例说明的话就是,你将profession,age,status作为联合索引,从图中可以看到,如果Non_unique相同的话顺序就是从上到下的,如果不同则是从大到小依次执行,所以顺序就是profession,age,status的顺序。
对于最左前缀法则指的是,查询时,最左变的列,也就是profession必须存在,否则索引全部失效。而且中间不能跳过某一列,否则该列后面的字段索引将失效。 接下来,我们来演示几组案例,看一下具体的执行计划:
explain select * from tb_user where profession = '软件工程' and age = 31 and status = '0';
这样的可以完全利用索引的
explain select * from tb_user where profession = '软件工程' and age = 31;
这样利用了部分索引的,因为status的顺序是最后一个,所有并不会使索引失效
explain select * from tb_user where profession = '软件工程';
这样也使用了索引,只是使用索引不完全
以上的这三组测试中,我们发现只要联合索引最左边的字段 profession存在,索引就会生效,只不过索引的长度不同。
explain select * from tb_user where age = 31 and status = '0';
这样则不会使用索引,因为最左边的字段profession不存在
explain select * from tb_user where profession = '软件工程' and status = '0';
这种情况则会使索引丢失,因为profession是存在的所以会使用索引,但是中间的age不存在,所以status会丢失,不会使用索引来查询。
那么就可以思考这样一个问题了:
当执行SQL语句: explain select * from tb_user where age = 31 and status = '0' and profession = '软件工程'; 时,是否满足最左前缀法则,走不走上述的联合索引,索引长度?
可以看到是完全满足的,所以最左前缀法则中指的最左边的列,是指在查询时,联合索引的最左边的字段(即是第一个字段)必须存在,与我们编写SQL时,条件编写的先后顺序无关。
范围查询
联合索引中,出现范围查询(>,<),范围查询右侧的列索引失效。
explain select * from tb_user where profession = '软件工程' and age > 30 and status = '0';
这样的范围查询就会使age右边的status字段失效,但是改造一下就可以避免
explain select * from tb_user where profession = '软件工程' and age >= 30 and status = '0';
可以看到唯一改变的就是将> 换成了 >= 这样就可以避免上述问题
索引失效情况
索引列运算
在索引列上进行运算操作的话就会使索引失效,这样的SQL语句就可以使用索引来查询
explain select * from tb_user where phone = '17799990015';
但是如果对phone进行运算的话,想要查出phone以'15'结尾的用户信息则会使索引失效
explain select * from tb_user where substring(phone,10,2) = '15';
字符串不加引号
字符串类型字段使用时,不加引号,索引将失效。
-- 索引可以正常使用
explain select * from tb_user where profession = '软件工程' and age = 31 and status = '0';
-- 索引会失效
explain select * from tb_user where profession = '软件工程' and age = 31 and status = 0;
模糊查询
如果仅仅是尾部进行模糊查询,索引不会失效,其他情况,索引都会失效
-- 索引正常使用
explain select * from tb_user where profession like '软件%';
-- 索引失效
explain select * from tb_user where profession like '%工程';
-- 索引失效
explain select * from tb_user where profession like '%工%';
or连接条件
用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到
-- 设置age的单列索引后,or两侧的条件都有单列索引,那么就可以使用索引
explain select * from tb_user where id = 10 or age = 23;
explain select * from tb_user where phone = '17799990017' or age = 23;
数据分布影响
如果MySQL认为使用索引比全表查询还要慢的话,那么索引也不会被使用
-- 使用了索引
select * from tb_user where phone >= '17799990005';
-- 没有使用索引
select * from tb_user where phone >= '17799990015';
因为MySQL在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,则放弃索引,走全表扫描。 因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不如走全表扫描来的快,此时索引就会失效。
SQL提示
如果我们查询一个数据的时候,MySQL会自己匹配索引,但是如果匹配的索引不是最佳索引的话,我们可以自己来指定使用哪个索引,这个就是SQL提示
举个例子,我们先执行下面的SQL语句,走的是之前的联合索引
explain select * from tb_user where profession = '软件工程';
那么我们就为profession单独创建一个索引
create index idx_user_pro on tb_user(profession);
但是再次执行MySQL还是会选择联合索引,所以我们就得给MySQL提示
explain select * from tb_user use index(idx_user_pro) where profession = '软件工程';
这样就走的是单列索引了
下面是SQL提示的语法:
- use index : 建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进 行评估)。
explain select * from tb_user use index(idx_user_pro) where profession = '软件工程';
- ignore index : 忽略指定的索引。
explain select * from tb_user ignore index(idx_user_pro) where profession = '软件工程';
- force index : 强制使用索引。
explain select * from tb_user force index(idx_user_pro) where profession = '软件工程';
覆盖索引
尽量使用覆盖索引,减少select *。 那么什么是覆盖索引呢? 覆盖索引是指 查询使用了索引,并 且需要返回的列,在该索引中已经全部能够找到 。
可以先来看一组SQL语句
explain select id, profession from tb_user where profession = '软件工程' and age = 31 and status = '0' ;
explain select id,profession,age, status from tb_user where profession = '软件工程' and age = 31 and status = '0' ;
explain select id,profession,age, status, name from tb_user where profession = '软件工程' and age = 31 and status = '0' ;
explain select * from tb_user where profession = '软件工程' and age = 31 and status = '0';
可以观察一下执行的结果
从上述的执行计划我们可以看到,这四条SQL语句的执行计划前面所有的指标都是一样的,看不出来差 异。但是此时,我们主要关注的是后面的Extra,前面两天SQL的结果为 Using where; Using Index ; 而后面两条SQL的结果为: Using index condition 。
所以前两个查询中使用二级索引就可以得到需要查询的所有数据,就不用再通过主键id再聚合索引中去查询了,这就是覆盖查询
后两个也使用了二级索引,但是查询的字段有一些不包括在二级索引中,所以得在二级索引中拿着主键id去聚合索引中查询
前缀索引
前缀索引主要是用在字段类型为字符串(varchar,text,longtext等)时,当字符串过大时,会让索引也变得很大,非常浪费磁盘IO,所以就可以选取字符串前几位来作为索引。
语法是这样的
create index idx_xxxx on table_name(column(n)) ;
以email字段为例:取email的前五位来作为前缀索引
create index idx_email_5 on tb_user(email(5));
前缀长度的确认根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高, 唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。
-- 截取email的前五位且不能重复,除以email的总数
select count(distinct substring(email,1,5)) / count(*) from tb_user ;
索引设计原则
- 针对于数据量较大,且查询比较频繁的表建立索引。
- 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引。
- 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
- 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。
- 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。
- 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。
- 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询。