BZOJ 5252 林克卡特树 —— 树形dp + wqs二分

题目链接:点我啊╭(╯^╰)╮

题目大意:

     一颗带正负边权的树
     删去 k k k 条边后,再任意加上 k k k 条边权为 0 0 0 的边
     问任意两点简单路径的最大值

解题思路:

     题目可以转化为:
     求不相交的 k + 1 k+1 k+1 条链的最大边权和
     那么树形 d p dp dp 即可,时间复杂度为 O ( n k 2 ) O(nk^2) O(nk2)
     设 d p [ i ] [ j ] [ k ] dp[i][j][k] dp[i][j][k] 为以 i i i 为根节点的子树,不相交的 j j j 条链,且 i i i 的链度数为 k k k 的最大值
     d p [ i ] [ j ] [ 2 ] dp[i][j][2] dp[i][j][2] 表示 i i i 为链的路径
     d p [ i ] [ j ] [ 1 ] dp[i][j][1] dp[i][j][1] 表示 i i i 为链的端点
     d p [ i ] [ j ] [ 0 ] dp[i][j][0] dp[i][j][0] 表示 i i i 与链不相交
     然后用 w q s wqs wqs 二分优化掉 d p dp dp 里的 k k k
     时间复杂度就降为了 O ( n ) O(n) O(n)

     注意要一开始就对 d p [ i ] [ 1 ] dp[i][1] dp[i][1] d p [ i ] [ 2 ] dp[i][2] dp[i][2] 赋值,表示增加一条链的代价
     两条链合并为一条链时,原来要 − - 斜率 k k k
     因为一开始赋了值,因此这里变成 + + + 斜率 k k k
    。。但是我看有些博客是不对 d p [ i ] [ 1 ] dp[i][1] dp[i][1] 赋值,合并 − - 斜率 k k k,感觉不是那么容易理解。。

// https://loj.ac/problem/2478
// https://oj.lpoj.cn/problemdetail?problemID=5793 
#include<bits/stdc++.h>
#define rint register int
#define deb(x) cerr<<#x<<" = "<<(x)<<'\n';
using namespace std;
typedef long long ll;
typedef pair <int,int> pii;
const int maxn = 3e5 + 5;
int n, k, cnt;
vector <pii> g[maxn];
ll mid, tot;
struct node{
	ll v, num;
	bool operator < (const node &A) const {
		return v == A.v ? num > A.num : v < A.v;
	}
	node operator + (const node &A) const {
		return {v + A.v, num + A.num};
	}
	node operator + (int A) const {
		return {v + A, num};
	}
} dp[maxn][3];

void dfs(int u, int fa){
	for(auto tv : g[u]){
		int v = tv.first, w = tv.second;
		if(v == fa) continue;
		dfs(v, u);
		dp[u][2] = max(dp[u][2] + dp[v][0], dp[u][1] + dp[v][1] + w + (node){mid, -1});
		dp[u][1] = max(dp[u][1] + dp[v][0], dp[u][0] + dp[v][1] + w);
		dp[u][0] = dp[u][0] + dp[v][0];
	}
	dp[u][0] = max(dp[u][0], max(dp[u][1], dp[u][2]));
}

bool ck(ll x){
	for(int i=1; i<=n; i++) 
		dp[i][1] = dp[i][2] = (node){-x, 1}, dp[i][0] = (node){0, 0};
	dfs(1, 0);
	return dp[1][0].num <= k;
}

signed main() {
	scanf("%d%d", &n, &k); k++;
	for(int i=1; i<n; i++){
		int u, v, w;
		scanf("%d%d%d", &u, &v, &w);
		g[u].push_back({v, w});
		g[v].push_back({u, w});
		tot += abs(w);
	}
	ll l = -tot, r = tot;
	while(l <= r){
		mid = l + r >> 1;
		if(ck(mid)) r = mid - 1;
		else l = mid + 1;
	}
	ck(mid = l);
	printf("%lld", dp[1][0].v + l * k);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值