线性代数复习

线性代数

第一单元

行列式
|A|=|A|n1|A1=1|A|

矩阵运算的性质

#

第四单元

向量的内积

向量内积和模

[a,b]=Σaibi

cos=[α,β]||α||||β||

$$
||\alpha-\beta|| = \sqrt[2]{(a_1-b_1)^2+(a_2-b_2)^2+…+(a_n-b_n)^2} \
||\alpha-\beta|| = \sqrt[2]{||\alpha||^2 + ||\beta||^2 - 2||a||||\beta||cos\theta}

$$
*–

正交向量组

施密特正交化

$$
\beta1 = \alpha \
\beta2 = \alpha2 - \frac{[a2,b1]}{[b1,b1]}\beta1 \
\beta3 = \alpha3 - \frac{[a3,b1]}{b1,b1}\beta1-\frac{[a3,b2]}{[b2,b2]}\beta2

$$

正交矩阵

形如ATA=I,注意是AT在前面。可以推出AT=A1
*–

二次型

二次型的标准型

正交变化

方法

配方法

配方法然后换元
(也叫做可逆线性变换)

正定

判断
$$
\lambda_1x_1^2+\lambda_2x_2x_1….

$$

如果系数都为正数或者负数就是正或者负定

但是如果只是给你一个矩阵你要是求特征值的话,这样很慢而且很麻烦,就可以直接计算

弄懂了的题目

设三阶是对称方朕A的特征值为λ1=λ2=1,λ3=2,R(2IA)=2R=(IA)=1

容易错的题目

  1. 二次型f(x1,x2,x3,x4)=x12+2x22+3x32+4x1x2+2x2x3

零碎的知识点

对于一般的求n次的问题

An

1. 常规做法是对对角矩阵
2. 求出P
3. 然后求出P1

如果是简单的二维可以使用数学归纳法,如果是对角矩阵可以直接对角线每一个元素pow(N)

>

阅读更多
上一篇数据结构专题之线段树的单点修改
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭