BZOJ 1036 树的统计

6 篇文章 0 订阅
3 篇文章 0 订阅

Description

  一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成
一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I
II. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身

Input

  输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有
一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作
的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。 
对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。

Output

  对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。

Sample Input

4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4

Sample Output

4
1
2
2
10
6
5
6
5
16

CNM这不裸的树剖吗..

这几天树剖都快尼玛做吐了...

#include <cstdio>
#include <iostream>
#include <cstring>
#define inf 0x3f3f3f3f
#define travel(x) for(int i = head[x]; i; i = edge[i].next)
using namespace std;

const int MAXN = 30000 + 10;

inline int read() {
    int x = 0, f = 1; char ch = getchar();
    while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
    while(ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
    return x * f;
}

struct data { int to, next; }edge[MAXN << 1];
int head[MAXN], dep[MAXN], size[MAXN], fa[MAXN];
int pos[MAXN], top[MAXN], cnt, sz;

inline void addedge(int u, int v) {
    edge[++cnt].to = v; edge[cnt].next = head[u];
    head[u] = cnt;
}

inline void dfs1(int x) {
    size[x] = 1;
    travel(x) {
    	int v = edge[i].to;
        if(v == fa[x]) continue;
        dep[v] = dep[x] + 1;
        fa[v] = x; dfs1(v);
        size[x] += size[v];
    }
}

inline void dfs2(int x, int chain) {
    int k = 0; sz++; pos[x] = sz; top[x] = chain;
    travel(x) { int v = edge[i].to; if(dep[v] > dep[x] && size[v] > size[k]) k = v; }
    if(!k) return;
    dfs2(k, chain);
    travel(x) { int v = edge[i].to; if(dep[v] > dep[x] && k != v) dfs2(v, v); }
}

struct node { int l, r, mx, sum; }tree[MAXN << 2];
int v[MAXN], n, q;

inline void pushup(int id) {
    tree[id].sum = tree[id << 1].sum + tree[id << 1 | 1].sum;
    tree[id].mx = max(tree[id << 1].mx, tree[id << 1 | 1].mx);
}

inline void build_tree(int id, int l, int r) {
    tree[id].l = l; tree[id].r = r; tree[id].mx = tree[id].sum = 0;
    if(l == r) return;
    int mid = (l + r) >> 1;
    build_tree(id << 1, l, mid);
    build_tree(id << 1 | 1, mid + 1, r);
}

inline void update(int id, int pos, int c) {
    int l = tree[id].l, r = tree[id].r;
    if(l == r) {
        tree[id].sum = tree[id].mx = c;
        return;
    }
    int mid = (l + r) >> 1;
    if(pos <= mid) update(id << 1, pos, c);
    else update(id << 1 | 1, pos, c);
    pushup(id);
}

inline int query_sum(int id, int L, int R) {
    int l = tree[id].l, r = tree[id].r;
    if(l == L && r == R) return tree[id].sum;
    int mid = (l + r) >> 1;
    if(R <= mid) return query_sum(id << 1, L, R);
    else if(L > mid) return query_sum(id << 1 | 1, L, R);
    else return query_sum(id << 1, L, mid) + query_sum(id << 1 | 1, mid + 1, R);
}

inline int query_max(int id, int L, int R) {
    int l = tree[id].l, r = tree[id].r;
    if(l == L && r == R) return tree[id].mx;
    int mid = (l + r) >> 1;
    if(R <= mid) return query_max(id << 1, L, R);
    else if(L > mid) return query_max(id << 1 | 1, L, R);
    else return max(query_max(id << 1, L, mid), query_max(id << 1 | 1, mid + 1, R));
}

inline int solvesum(int x, int y) {
    int ret = 0;
    while(top[x] != top[y]) {
        if(dep[top[x]] < dep[top[y]]) swap(x, y);
        ret += query_sum(1, pos[top[x]], pos[x]);
        x = fa[top[x]];
    }
    if(pos[x] > pos[y]) swap(x, y);
    ret += query_sum(1, pos[x], pos[y]);
    return ret;
}

inline int solvemax(int x, int y) {
    int mx = -inf;
    while(top[x] != top[y]) {
        if(dep[top[x]] < dep[top[y]]) swap(x, y);
        mx = max(mx, query_max(1, pos[top[x]], pos[x]));
        x = fa[top[x]];
    }
    if(pos[x] > pos[y]) swap(x, y);
    mx = max(mx, query_max(1, pos[x], pos[y]));
    return mx;
}

int main() {
    n = read(); q = read();
    for(int i = 1; i <= n; ++i) v[i] = read();
    for(int i = 1, x, y; i < n; ++i) {
        x = read(), y = read();
        addedge(x, y);
        addedge(y, x);
    }
    dfs1(1); dfs2(1, 1); build_tree(1, 1, n);
    for(int i = 1; i <= n; ++i) update(1, pos[i], v[i]);
    char str[10];
    for(int i = 1, x, y; i <= q; ++i) {
        scanf("%s", str);
        if(str[0] == 'C') {
            x = read(), y = read();
            update(1, pos[x], y);
        }
        else {
            x = read(), y = read();
            if(str[1] == 'M') printf("%d\n", solvemax(x, y));
            else printf("%d\n", solvesum(x, y));
        }
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值