动态规划知识整理

一、思维导图


二、动态规划算法的基本概念

       动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。

2、重叠子问题性质

        构建最优解过程中存在重复计算局部最优的情况。


三、动态规划的基本要素

1、最优子结构性质

        原问题部分的最优解的局部,构成局部的最优解。

2、重叠子问题性质

        构建最优解过程中存在重复计算局部最优的情况。


四、动态规划算法的步骤

1、找出最优解的性质,并刻画其结构特征

2、递归定义最优值

3、自底向上的方式计算最优值

4、根据计算最优值时得到的信息构造最优解


五、动态规划的例题

 有关动态规划经典例题:矩阵链乘问题、最长公共子序列、背包问题、最优二叉树问题。

矩阵链乘问题为例:

矩阵链乘问题

 问题描述:给定n个矩阵{A1,A2,...,An},其中Ai与Ai+1是可乘的,i=1,2...,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序      计算矩阵连乘积需要的数乘次数最少。

输入数据:共m+1行;第一行为测试数据的组数m;以后每行n+1个正      整数,表示n个矩阵的行列值。

输出:最少次数及连乘的计算次序。

样例输入:

1

5  10  4  6  10  2

5

5  10  4  6  10  2 

样例输出:

348

(A1(A2(A3(A4A5))))

 设计思想: 

状态转移方程:m[i][j]=①0 i=j ②min{m[i][k]+m[k+1][j]+Pi-1*Pk*Pj}i<=k<=j。

找1到n的最优解,通过找到子问题的最优解,合并为原问题的最优解,从矩阵i到j链乘各种划分中找到最优的子问题解构成i到j解的一部分,再加上两子问题乘积个数构成i到j的解。

代码:

#include<iostream>
#define MAX 9999
using namespace std;

void MatrixChain(int *a, int n, int **b, int **c){
	for(int i=1;i<=n;i++){
		c[i][i]=b[i][i]=0;
	}
		
	for(int i=1;i<n;i++)
		for(int j=1;j<=n-i;j++){
			int q=i+j;
			b[j][q]=b[j+1][q]+a[j-1]*a[j]*a[q];
			c[j][q]=j;
			for(int k=j+1;k<q;k++){
				int t=b[j][k]+b[k+1][q]+a[j-1]*a[k]*a[q];
				if(t<b[j][q]){
					b[j][q]=t;
					c[j][q]=k;
				}
					
			}
		}
}

void Trceback(int i, int j, int** c){
	if(i==j){
		cout<<"A"<<i;
		return;
	}
	cout<<"(";
	Trceback(i,c[i][j],c);
	Trceback(c[i][j]+1,j,c);
	cout<<")";
}

int main(){
	int n,m=99999;
	cin>>n;
	int *a=new int [MAX];
	int **b=new int*[MAX];
	int **c=new int*[MAX];
	for(int i=0;i<=MAX;i++){
		b[i]=new int [MAX];
		c[i]=new int [MAX];
	}
	for(int i=0;i<n;i++){
		int j=0;
		do{
			cin>>a[j++];
		}while(getchar()!='\n');
		MatrixChain(a, j-1, b, c);
		cout<<b[1][j-1]<<endl;
		Trceback(1,j-1,c);
		cout<<endl;
	}
		return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值