一、思维导图
二、动态规划算法的基本概念
动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。
2、重叠子问题性质
构建最优解过程中存在重复计算局部最优的情况。
三、动态规划的基本要素
1、最优子结构性质
原问题部分的最优解的局部,构成局部的最优解。
2、重叠子问题性质
构建最优解过程中存在重复计算局部最优的情况。
四、动态规划算法的步骤
1、找出最优解的性质,并刻画其结构特征
2、递归定义最优值
3、自底向上的方式计算最优值
4、根据计算最优值时得到的信息构造最优解
五、动态规划的例题
有关动态规划经典例题:矩阵链乘问题、最长公共子序列、背包问题、最优二叉树问题。
矩阵链乘问题为例:
矩阵链乘问题
问题描述:给定n个矩阵{A1,A2,...,An},其中Ai与Ai+1是可乘的,i=1,2...,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序 计算矩阵连乘积需要的数乘次数最少。
输入数据:共m+1行;第一行为测试数据的组数m;以后每行n+1个正 整数,表示n个矩阵的行列值。
输出:最少次数及连乘的计算次序。
样例输入:
1
5 10 4 6 10 2
5
5 10 4 6 10 2
样例输出:
348
(A1(A2(A3(A4A5))))
设计思想:
状态转移方程:m[i][j]=①0 i=j ②min{m[i][k]+m[k+1][j]+Pi-1*Pk*Pj}i<=k<=j。
找1到n的最优解,通过找到子问题的最优解,合并为原问题的最优解,从矩阵i到j链乘各种划分中找到最优的子问题解构成i到j解的一部分,再加上两子问题乘积个数构成i到j的解。
代码:
#include<iostream>
#define MAX 9999
using namespace std;
void MatrixChain(int *a, int n, int **b, int **c){
for(int i=1;i<=n;i++){
c[i][i]=b[i][i]=0;
}
for(int i=1;i<n;i++)
for(int j=1;j<=n-i;j++){
int q=i+j;
b[j][q]=b[j+1][q]+a[j-1]*a[j]*a[q];
c[j][q]=j;
for(int k=j+1;k<q;k++){
int t=b[j][k]+b[k+1][q]+a[j-1]*a[k]*a[q];
if(t<b[j][q]){
b[j][q]=t;
c[j][q]=k;
}
}
}
}
void Trceback(int i, int j, int** c){
if(i==j){
cout<<"A"<<i;
return;
}
cout<<"(";
Trceback(i,c[i][j],c);
Trceback(c[i][j]+1,j,c);
cout<<")";
}
int main(){
int n,m=99999;
cin>>n;
int *a=new int [MAX];
int **b=new int*[MAX];
int **c=new int*[MAX];
for(int i=0;i<=MAX;i++){
b[i]=new int [MAX];
c[i]=new int [MAX];
}
for(int i=0;i<n;i++){
int j=0;
do{
cin>>a[j++];
}while(getchar()!='\n');
MatrixChain(a, j-1, b, c);
cout<<b[1][j-1]<<endl;
Trceback(1,j-1,c);
cout<<endl;
}
return 0;
}