B+树的定义、插入、删除

一、B+树的定义

各种资料上B+树的定义各有不同,一种定义方式是关键字个数和孩子结点个数相同。这里我们采取维基百科上所定义的方式,即关键字个数比孩子结点个数小1,这种方式是和B树基本等价的。上图就是一颗阶数为4的B+树。
除此之外B+树还有以下的要求:
    1)B+树包含2种类型的结点:内部结点(也称索引结点)和叶子结点。根结点本身即可以是内部结点,也可以是叶子结点。根结点的关键字个数最少可以只有1个。
    2)B+树与B树最大的不同是:B+树内部结点不保存数据,只用于索引,所有数据(或者说记录)都保存在叶子结点中。
    3) m阶B+树表示了内部结点最多有m-1个关键字(或者说内部结点最多有m个子树),阶数m同时限制了叶子结点最多存储m-1个记录。
    4)内部结点中的key都按照从小到大的顺序排列,对于内部结点中的一个key,左树中的所有key都小于它,右子树中的key都大于等于它。叶子结点中的记录也按照key的大小排列。
    5)每个叶子结点都存有相邻叶子结点的指针,叶子结点本身依关键字的大小自小而大顺序链接。

二、为什么说B+树比B树更适合数据库索引?

1)B+树的磁盘读写代价更低
  B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B 树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了;

2)B+树查询效率更加稳定
  由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当;

3)B+树便于范围查询(最重要的原因,范围查找是数据库的常态)
  B树在提高了IO性能的同时并没有解决元素遍历的我效率低下的问题,正是为了解决这个问题,B+树应用而生。B+树只需要去遍历叶子节点就可以实现整棵树的遍历。而且在数据库中基于范围的查询是非常频繁的,而B树不支持这样的操作或者说效率太低;

B树的范围查找用的是中序遍历,而B+树用的是在链表上遍历;

三、B+树的插入操作

1)若为空树,创建一个叶子结点,然后将记录插入其中,此时这个叶子结点也是根结点,插入操作结束。
2)针对叶子类型结点:根据key值找到叶子结点,向这个叶子结点插入记录。插入后,若当前结点key的个数小于等于m-1,则插入结束。否则将这个叶子结点分裂成左右两个叶子结点,左叶子结点包含前m/2个记录,右结点包含剩下的记录,将第m/2+1个记录的key进位到父结点中(父结点一定是索引类型结点),进位到父结点的key左孩子指针向左结点,右孩子指针向右结点。将当前结点的指针指向父结点,然后执行第3步。
3)针对索引类型结点:若当前结点key的个数小于等于m-1,则插入结束。否则,将这个索引类型结点分裂成两个索引结点,左索引结点包含前(m-1)/2个key,右结点包含m-(m-1)/2个key,将第m/2个key进位到父结点中,进位到父结点的key左孩子指向左结点, 进位到父结点的key右孩子指向右结点。将当前结点的指针指向父结点,然后重复第3步。

下面是一颗5阶B树的插入过程,5阶B数的结点最少2个key(ceil(m/2)-1),最多4个key(m-1)。

a)空树中插入5

clip_image041

b)依次插入8,10,15

clip_image043

c)插入16

clip_image045

插入16后超过了关键字的个数限制(大于m-1=4了),所以要进行分裂;

在叶子结点分裂时,分裂出来的左结点2个记录,右边3个记录,中间key成为索引结点中的key,分裂后当前结点指向了父结点(根结点);

结果如下图所示:

(当然我们还有另一种分裂方式,给左结点3个记录,右结点2个记录,此时索引结点中的key就变为15。)

clip_image047

d)继续,插入17

clip_image049

e)插入18,插入后如下图所示

clip_image051

当前结点的关键字个数大于4(m-1),进行分裂;

分裂成两个结点,左结点2个记录,右结点3个记录,关键字16进位到父结点(索引类型)中,将当前结点的指针指向父结点。

clip_image053

当前结点的关键字个数满足条件,插入结束;

f)继续,插入若干数据后:

clip_image055

g)在上图中插入7,结果如下图所示

clip_image057

当前结点的关键字个数超过4,需要分裂;

左结点2个记录,右结点3个记录;

分裂后关键字7进入到父结点中,将当前结点的指针指向父结点,结果如下图所示:

clip_image059

此时,当前结点的关键字个数超过4,需要继续分裂;

左结点2个关键字,右结点2个关键字,关键字16进入到父结点中,将当前结点指向父结点,结果如下图所示:

clip_image061

当前结点的关键字个数满足条件,插入结束。

四、B+树的删除操作

如果叶子结点中没有相应的key,则删除失败。否则执行下面的步骤
1)删除叶子结点中对应的key。删除后若结点的key的个数大于等于Math.ceil(m-1)/2 – 1,删除操作结束,否则执行第2步。
2)若兄弟结点key有富余(大于Math.ceil(m-1)/2 – 1),向兄弟结点借一个记录,同时用借到的key替换父结(指当前结点和兄弟结点共同的父结点)点中的key,删除结束。否则执行第3步。
3)若兄弟结点中没有富余的key,则当前结点和兄弟结点合并成一个新的叶子结点,并删除父结点中的key(父结点中的这个key两边的孩子指针就变成了一个指针,正好指向这个新的叶子结点),将当前结点指向父结点(必为索引结点),执行第4步(第4步以后的操作和B树就完全一样了,主要是为了更新索引结点)。
4)若索引结点的key的个数大于等于Math.ceil(m-1)/2 – 1,则删除操作结束。否则执行第5步
5)若兄弟结点有富余,父结点key下移,兄弟结点key上移,删除结束。否则执行第6步
6)当前结点和兄弟结点及父结点下移key合并成一个新的结点。将当前结点指向父结点,重复第4步。
注意,通过B+树的删除操作后,索引结点中存在的key,不一定在叶子结点中存在对应的记录。

下面是一颗5阶B树的删除过程,5阶B数的结点最少2个key,最多4个key:

a)初始状态

clip_image063

b)删除22,删除后结果如下图:

删除后叶子结点中key的个数大于等于2,删除结束

clip_image065

c)删除15,删除后的结果如下图所示

clip_image067

删除后当前结点只有一个key,不满足条件,而兄弟结点有三个key,可以从兄弟结点借一个关键字为9的记录,同时更新将父结点中的关键字由10也变为9,删除结束。

clip_image069

d)删除7,删除后的结果如下图所示

clip_image071

当前结点关键字个数小于2,(左)兄弟结点中的也没有富余的关键字(当前结点还有个右兄弟,不过选择任意一个进行分析就可以了,这里我们选择了左边的),所以当前结点和兄弟结点合并,并删除父结点中的key,当前结点指向父结点。

clip_image073

此时当前结点的关键字个数小于2,兄弟结点的关键字也没有富余,所以父结点中的关键字下移,和两个孩子结点合并,结果如下图所示。

clip_image075

 

 

参考:

B树和B+树的插入、删除图文详解:https://www.cnblogs.com/nullzx/p/8729425.html
B树、B+树详解:https://www.cnblogs.com/lianzhilei/p/11250589.html

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值