弄明白python reduce 函数

弄明白python reduce 函数

作者:Panda Fang

出处:http://www.cnblogs.com/lonkiss/p/understanding-python-reduce-function.html

原创文章,转载请注明作者和出处,未经允许不可用于商业营利活动

reduce() 函数在 python 2 是内置函数, 从python 3 开始移到了 functools 模块。

官方文档是这样介绍的

reduce(...)
reduce(function, sequence[, initial]) -> value

Apply a function of two arguments cumulatively to the items of a sequence,
from left to right, so as to reduce the sequence to a single value.
For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5). If initial is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.

从左到右对一个序列的项累计地应用有两个参数的函数,以此合并序列到一个单一值。

例如,reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])  计算的就是((((1+2)+3)+4)+5)。

如果提供了 initial 参数,计算时它将被放在序列的所有项前面,如果序列是空的,它也就是计算的默认结果值了

嗯, 这个文档其实不好理解。看了还是不懂。 序列 其实就是python中 tuple  list  dictionary string  以及其他可迭代物,别的编程语言可能有数组。

reduce 有 三个参数

function有两个参数的函数, 必需参数
sequencetuple ,list ,dictionary, string等可迭代物,必需参数
initial初始值, 可选参数

reduce的工作过程是 :在迭代sequence(tuple ,list ,dictionary, string等可迭代物)的过程中,首先把 前两个元素传给 函数参数,函数加工后,然后把得到的结果和第三个元素作为两个参数传给函数参数, 函数加工后得到的结果又和第四个元素作为两个参数传给函数参数,依次类推。 如果传入了 initial 值, 那么首先传的就不是 sequence 的第一个和第二个元素,而是 initial值和 第一个元素。经过这样的累计计算之后合并序列到一个单一返回值

 

reduce 代码举例,使用REPL演示

  • REPL — 交互式解释器环境。R(read)、E(evaluate)、P(print)、L(loop)
  • 交互式解释器会读取输入内容并对它求值,再返回结果,并重复此过程。

 

>>> def add(x, y):
...     return x+y
...
>>> from functools import reduce
>>> reduce(add, [1,2,3,4])
10
>>>

 

上面这段 reduce 代码,其实就相当于 1 + 2 + 3 + 4 = 10, 如果把加号改成乘号, 就成了阶乘了

当然 仅仅是求和的话还有更简单的方法,如下

>>> sum([1,2,3,4])
10
>>>

 

很多教程只讲了一个加法求和,太简单了,对新手加深理解还不够。下面讲点更深入的例子


还可以把一个整数列表拼成整数,如下

>>> from functools import reduce
>>> reduce(lambda x, y: x * 10 + y, [1 , 2, 3, 4, 5])
12345
>>>

 

对一个复杂的sequence使用reduce ,看下面代码,更多的代码不再使用REPL, 使用编辑器编写

 

 1 from functools import reduce
 2 scientists =({'name':'Alan Turing', 'age':105},
 3              {'name':'Dennis Ritchie', 'age':76},
 4              {'name':'John von Neumann', 'age':114},
 5              {'name':'Guido van Rossum', 'age':61})
 6 def reducer(accumulator , value):
 7     sum = accumulator['age'] + value['age']
 8     return sum
 9 total_age = reduce(reducer, scientists)
10 print(total_age)

 

这段代码会出错,看下图的执行过程

 

 

 

 

所以代码需要修改

 

 1 from functools import reduce
 2 scientists =({'name':'Alan Turing', 'age':105, 'gender':'male'},
 3              {'name':'Dennis Ritchie', 'age':76, 'gender':'male'},
 4              {'name':'Ada Lovelace', 'age':202, 'gender':'female'},
 5              {'name':'Frances E. Allen', 'age':84, 'gender':'female'})
 6 def reducer(accumulator , value):
 7     sum = accumulator + value['age']
 8     return sum
 9 total_age = reduce(reducer, scientists, 0)
10 print(total_age)

 

7, 9 行 红色部分就是修改 部分。 通过 help(reduce) 查看 文档,

reduce 有三个参数, 第三个参数是初始值的意思,是可有可无的参数。

 

修改之后就不出错了,流程如下

 

这个仍然也可以用 sum 来更简单的完成

sum([x['age'] for x in scientists ])

做点更高级的事情,按性别分组

 

from functools import reduce
scientists =({'name':'Alan Turing', 'age':105, 'gender':'male'},
             {'name':'Dennis Ritchie', 'age':76, 'gender':'male'},
             {'name':'Ada Lovelace', 'age':202, 'gender':'female'},
             {'name':'Frances E. Allen', 'age':84, 'gender':'female'})
def group_by_gender(accumulator , value):
    accumulator[value['gender']].append(value['name'])
    return accumulator
grouped = reduce(group_by_gender, scientists, {'male':[], 'female':[]})
print(grouped)

复制代码

输出

{'male': ['Alan Turing', 'Dennis Ritchie'], 'female': ['Ada Lovelace', 'Frances E. Allen']}

可以看到,在 reduce 的初始值参数传入了一个dictionary,, 但是这样写 key 可能出错,还能再进一步自动化,运行时动态插入key

修改代码如下

grouped = reduce(group_by_gender, scientists, collections.defaultdict(list))

当然 先要 import  collections 模块

这当然也能用 pythonic way 去解决

 

import  itertools
scientists =({'name':'Alan Turing', 'age':105, 'gender':'male'},
             {'name':'Dennis Ritchie', 'age':76, 'gender':'male'},
             {'name':'Ada Lovelace', 'age':202, 'gender':'female'},
             {'name':'Frances E. Allen', 'age':84, 'gender':'female'})
grouped = {item[0]:list(item[1])
           for item in itertools.groupby(scientists, lambda x: x['gender'])}
print(grouped)

 

 

再来一个更晦涩难懂的玩法。工作中要与其他人协作的话,不建议这么用,与上面的例子做同样的事,看不懂无所谓。

 

from functools import reduce
scientists =({'name':'Alan Turing', 'age':105, 'gender':'male'},
             {'name':'Dennis Ritchie', 'age':76, 'gender':'male'},
             {'name':'Ada Lovelace', 'age':202, 'gender':'female'},
             {'name':'Frances E. Allen', 'age':84, 'gender':'female'})
grouped = reduce(lambda acc, val: {**acc, **{val['gender']: acc[val['gender']]+ [val['name']]}}, scientists, {'male':[], 'female':[]})
print(grouped)

 

**acc, **{val['gneder']...   这里使用了 dictionary merge syntax ,  从 python 3.5 开始引入, 详情请看 PEP 448 - Additional Unpacking Generalizations  怎么使用可以参考这个 python - How to merge two dictionaries in a single expression? - Stack Overflow

python 社区推荐写可读性好的代码,有更好的选择时不建议用reduce,所以 python 2 中内置的reduce 函数 移到了 functools模块中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值