R语言:多项式分布的极大似然估计

90 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用R语言进行多项式分布的极大似然估计。通过理解试验次数n和每个试验成功概率向量p,利用极大似然估计方法找到使观测数据似然函数最大化的参数值,文中提供了相应的R语言源代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言:多项式分布的极大似然估计

多项式分布是概率论中常用的一种分布,它描述了在多个独立的试验中,每个试验成功的概率是固定的,且各个试验之间相互独立的情况。在R语言中,我们可以使用极大似然估计来估计多项式分布的参数。本文将详细介绍如何使用R语言实现多项式分布的极大似然估计,并提供相应的源代码。

首先,我们需要明确多项式分布的参数。多项式分布由两个参数决定:试验次数n和每个试验成功的概率向量p。试验次数n表示进行多少次独立的试验,而成功的概率向量p表示每个试验成功的概率。假设我们有k个可能的结果,那么概率向量p包含了k个元素,分别表示每个结果发生的概率。

接下来,我们将使用极大似然估计来估计多项式分布的参数。极大似然估计的目标是找到使观测数据的似然函数最大化的参数值。对于多项式分布,似然函数可以通过将观测数据的概率乘积最大化来获得。

以下是使用R语言进行多项式分布的极大似然估计的示例代码:

# 定义观测数据
observations <- c(10, 15, 20)  # 假设有3个可能的结果,观测到的次数分别为10、15、20

# 定义似然函数
likelihood <- function(p) {
  n <- sum(observations)  # 计算总的试验次数
  k <- length(observations)  # 计算可能的结果个数
  log_likelihood <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值