选择排序

本文详细介绍了选择排序和堆排序两种经典的排序算法。选择排序通过每次选择未排序部分的最小值并放置到已排序序列的末尾来完成排序;堆排序则是利用二叉堆的数据结构,通过建立最大堆或最小堆并不断调整来实现元素的有序排列。
摘要由CSDN通过智能技术生成

选择排序的基本思想:每一趟从待排序的序列中找出最小(大)的值,放在已排好序的序列的末尾。

分为直接选择排序(Selection Sort),堆排序(Heap Sort),平滑排序(Smooth Sort),笛卡尔树排序(Cartesian Sort),锦标赛排序(Tournament Sort),循环排序(Cycle)。

1. 直接选择排序(Selection Sort)

  • 时间复杂度:O(n^2)
  • 稳定性:不稳定
代码实现:

void SelectionSort(int *a, int len) {
	for (int i = 0; i < len - 1; i++) {
		int key = i;
		int keyVal = a[i];
		for (int j = i + 1; j < len; j++) {
			if (a[j] < keyVal) {
				key = j;
				keyVal = a[j];
			}
		}
		if (key != i)
			swap(a[i], a[key]);
	}
}

2. 堆排序(Heap Sort)

  • 时间复杂度:O(n*logn)
  • 稳定性:不稳定


二叉堆:

  • 最大堆:父节点的键值总是大于或等于任何一个子节点的键值
  • 最小堆:父节点的键值总是小于或等于任何一个子节点的键值
用数组存储二叉堆:
  • 索引为i的左孩子索引是(2*i+1)
  • 索引为i的右孩子索引是(2*i+2)
  • 索引为i的父节点索引是floor((i-1)/2)
堆排序的思想:
  • 无序序列a(长度为n)可以用二叉堆表示,然后初始化为最大堆(最小堆),则根节点为最大值(最小值)
  • 将a[0]与a[n-1]交换,然后将a[0,n-2]排序为最大堆(最小堆),则根节点为最大值
  • 将a[0]与a[n-2]交换......
最大堆可进行升序排列,最小堆可进行降序排列
代码实现:
//利用最大堆进行升序排列
void maxHeap(int * a, int start, int end) {
	int j = 2 * start + 1;
	for (int i = start; j <= end; i = j, j = 2 * i + 1) {
		if ((j<end)&&(a[j] < a[j + 1]))
			j += 1;
		if (a[i] > a[j])
			break;
		else
			swap(a[i], a[j]);
	}
}
void heap_sort_up(int * a, int len) {
	for (int i = (len / 2 - 1); i >= 0; i--)
		maxHeap(a, i, len-1);
	for (int i = len - 1; i > 0; i--) {
		swap(a[0], a[i]);
		maxHeap(a, 0, i - 1);
	}
}
//利用最小堆进行降序排列
void minHeap(int *a, int start, int end) {
	int j = 2 * start + 1;
	for (int i = start; j <= end; i = j, j = 2 * i + 1) {
		if ((j<end) && a[j]>a[j + 1])
			j += 1;
		if (a[i] < a[j])
			break;
		else 
			swap(a[i], a[j]);
	}
}
void heap_sort_down(int * a, int len) {
	for (int i = (len / 2 - 1); i >= 0; i--)
		minHeap(a, i, len - 1);
	for (int i = len - 1; i > 0; i--) {
		swap(a[0], a[i]);
		minHeap(a, 0, i - 1);
	}
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值