计算几何相关问题

计算几何是直接可以拿kuangbin的板子进行写的,但是还是需要有自己的一些储备。
方法:从平面几何->解析几何
首先,我们需要判断浮点数符号。

const double eps = 1e-8;
//...
int sgn(double x) {
    if (fabs(x) < eps)return 0;
    if (x < 0)return -1;
    else return 1;
}

通过面向对象思想来定义点
面向对象
直线

struct Line {  //点向式直线
    Vec dir;
    Point pnt;
Line() {}
    Line(Vec _dir, Point _pnt) : dir(_dir), pnt(_pnt) {}
};

线段

struct Seg {  //两点式线段
    Point s, e;
Seg() {}
    Seg(Point _s, Point _e) : s(_s), e(_e) {}
};

点到直线距离:|𝑢 ⃗ |⋅𝑠𝑖𝑛⟨𝑢 ⃗,𝑣 ⃗ ⟩=|𝑢 ⃗×𝑣 ⃗ |/|𝑣 ⃗ |
double disPointToLine(Point p)
点到直线投影:|(𝑝𝑛𝑡𝑄) ⃗ |=|𝑢 ⃗ |⋅𝑐𝑜𝑠⟨𝑢 ⃗,𝑣 ⃗ ⟩=|𝑢 ⃗⋅𝑣 ⃗ |/|𝑣 ⃗ |
(𝑝𝑛𝑡𝑄) ⃗=|(𝑝𝑛𝑡𝑄) ⃗ |⋅𝑣 ⃗/|𝑣 ⃗ |=|𝑢 ⃗⋅𝑣 ⃗ |⋅𝑣 ⃗/|𝑣 ⃗ |^2
Point lineProg(Point p)

计算几何主要是套模板,以及熟能生巧。建议直接学习使用kuangbin大神的板子,以达到事半功倍的效果。

计算几何算法(含源代码) ㈠ 点的基本运算 1. 平面上两点之间距离 1 2. 判断两点是否重合 1 3. 矢量叉乘 1 4. 矢量点乘 2 5. 判断点是否在线段上 2 6. 求一点饶某点旋转后的坐标 2 7. 求矢量夹角 2 ㈡ 线段及直线的基本运算 1. 点与线段的关系 3 2. 求点到线段所在直线垂线的垂足 4 3. 点到线段的最近点 4 4. 点到线段所在直线的距离 4 5. 点到折线集的最近距离 4 6. 判断圆是否在多边形内 5 7. 求矢量夹角余弦 5 8. 求线段之间的夹角 5 9. 判断线段是否相交 6 10.判断线段是否相交但不交在端点处 6 11.求线段所在直线的方程 6 12.求直线的斜率 7 13.求直线的倾斜角 7 14.求点关于某直线的对称点 7 15.判断两条直线是否相交及求直线交点 7 16.判断线段是否相交,如果相交返回交点 7 ㈢ 多边形常用算法模块 1. 判断多边形是否简单多边形 8 2. 检查多边形顶点的凸凹性 9 3. 判断多边形是否凸多边形 9 4. 求多边形面积 9 5. 判断多边形顶点的排列方向,方法一 10 6. 判断多边形顶点的排列方向,方法二 10 7. 射线法判断点是否在多边形内 10 8. 判断点是否在凸多边形内 11 9. 寻找点集的graham算法 12 10.寻找点集凸包的卷包裹法 13 11.判断线段是否在多边形内 14 12.求简单多边形的重心 15 13.求凸多边形的重心 17 14.求肯定在给定多边形内的一个点 17 15.求从多边形外一点出发到该多边形的切线 18 16.判断多边形的核是否存在 19 ㈣ 圆的基本运算 1 .点是否在圆内 20 2 .求不共线的三点所确定的圆 21 ㈤ 矩形的基本运算 1.已知矩形三点坐标,求第4点坐标 22 ㈥ 常用算法的描述 22 ㈦ 补充 1.两圆关系: 24 2.判断圆是否在矩形内: 24 3.点到平面的距离: 25 4.点是否在直线同侧: 25 5.镜面反射线: 25 6.矩形包含: 26 7.两圆交点: 27 8.两圆公共面积: 28 9. 圆和直线关系: 29 10. 内切圆: 30 11. 求切点: 31 12. 线段的左右旋: 31 13.公式: 32
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值