用Excel做相关性分析

一、概念理解

相关关系:变量之间存在着的非严格的不确定的关系,对它们进行深层次的分析,观察它们的密切程度。

相关性分析:对变量之间相关关系的分析,即相关性分析。其中比较常用的是线性相关分析,用来衡量它的指标是线性相关系数,又叫皮尔逊相关系数,通常用r表示,取值范围是[-1,1],

二、实际应用

1、CORREL函数

在Excel中,可以用CORREL函数来计算相关系数,如我们对B列和C列进行分析,可以得到它的相关系数是0.95157,呈强相关。

2、数据分析

Excel里还可以用数据——数据分析——相关系数,这个功能来进行相关分析。数据分析这个功能怎么激活可以百度一下。

 

这里,我们可以对B C D三列一起进行分析,要注意的是,输入区域不能有非数值型数据,就是表头就不要包含了。

可以得到分析后的结果,列1、列2、列三分别对应B C D列,BC两列的相关系数是0.95157,和我们用CORREL函数计算出来的是一样的;BD两列的相关系数是0.832857,也是强相关;CD两列的相关系数是0.942791.

三、相关分析的呈现方式

还是刚才的数据,我们用折线图来呈现,很直观的可以看出来X1随着Y的增大而增大。呈正相关。

还可以用散点图来表示,横坐标是Y列值,纵坐标是X1列值,通过斜率的关系,可以看出它们呈正相关。

四、为什么要做相关分析

1、简单的相关性分析——如QC

做相关性分析,首先,很明显的一点是,了解两个或几个变量之间的关系,在做QC(质量管理)的时候,在要因确认这一项中会用到相关性分析,我们想要知道我们分析出来的末端因素和目标值之间有无相关关系,从而判断该末端因素对症结的影响程度。如随着工作人员培训次数的减少,产品合格率也降低,则说明工作人员培训不足呈强相关,是引起合格率降低的主要原因。

2、搭建模型时筛选有效的输入变量

原始数据有很多字段,但我们不一定全都将它们输入到模型中,这时要进行对输入变量的筛选,也可以提高分类模型的预测能力。输入的变量过多,可能会导致共线性问题,即输入的自变量之间存在较强的相关关系,多个自变量强相关,这显然是没有必要的,也浪费了资源和效率,只选择其中一个即可,因此用相关性分析可以避免共线性问题。当然解决共线性问题还有其他的方法,如主成分分析、聚类等,以后再细讲吧。

Python 会交互的绘图库 Plotly!

取数,取数,取个屁啊!

后台回复“入群”即可加入小z数据干货交流群
Excel中进行相关性分析是一种常见的数据分析方法。相关性分析可以帮助我们了解两个或多个变量之间的关系,并判断它们之间的相关程度。在Excel中,可以使用CORREL函数来计算两个变量之间的相关系数。相关系数的取值范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无相关性。 在进行相关性分析时,我们可以选择需要分析的变量,并使用CORREL函数计算它们之间的相关系数。相关系数越接近1或-1,表示两个变量之间的相关性越强。如果相关系数为0,则表示两个变量之间没有线性相关关系。 相关性分析在质量管理中也有应用。通过分析末端因素和目标值之间的相关关系,可以判断末端因素对目标值的影响程度。例如,如果工作人员培训次数减少与产品合格率降低呈强相关,那么可以判断工作人员培训不足是导致合格率降低的主要原因之一。 此外,相关性分析还可以用于变量筛选,以提高分类模型的预测能力。当输入变量过多时,可能会出现共线性问题,即输入变量之间存在较强的相关关系。在这种情况下,可以使用相关性分析来避免共线性问题。通过选择相关性较强的变量中的一个作为代表,可以减少冗余变量,提高模型的效率和准确性。 总之,Excel中的相关性分析是一种常用的数据分析方法,可以帮助我们了解变量之间的关系,并在质量管理和变量筛选等领域中发挥作用。 #### 引用[.reference_title] - *1* *2* *3* [用Excel相关性分析](https://blog.csdn.net/SeizeeveryDay/article/details/108656360)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值