洛谷 P2365 任务安排

本文探讨了如何通过合理分组一系列任务以最小化总费用的问题。任务按序列排布,需确定最优分组方案来减少启动成本及任务费用。采用动态规划方法求解,并提供代码实现。

题目描述

N个任务排成一个序列在一台机器上等待完成(顺序不得改变),这N个任务被分成若干批,每批包含相邻的若干任务。从时刻0开始,这些任务被分批加工,第i个任务单独完成所需的时间是Ti。在每批任务开始前,机器需要启动时间S,而完成这批任务所需的时间是各个任务需要时间的总和(同一批任务将在同一时刻完成)。每个任务的费用是它的完成时刻乘以一个费用系数Fi。请确定一个分组方案,使得总费用最小。

例如:S=1;T={1,3,4,2,1};F={3,2,3,3,4}。如果分组方案是{1,2}、{3}、{4,5},则完成时间分别为{5,5,10,14,14},费用C={15,10,30,42,56},总费用就是153。

输入输出格式

输入格式:

第一行是N(1<=N<=5000)。

第二行是S(0<=S<=50)。

下面N行每行有一对数,分别为Ti和Fi,均为不大于100的正整数,表示第i个任务单独完成所需的时间是Ti及其费用系数Fi。

输出格式:

一个数,最小的总费用。

输入输出样例

输入样例#1:
5
1
1 3
3 2
4 3
2 3
1 4
输出样例#1:
153














~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

动规~

可以斜率优化,但还是等我学会了再更吧……


#include<cstdio>
#include<iostream>
using namespace std;

int n,s,t[5001],fi[5001],f[5001];

int main()
{
	scanf("%d%d",&n,&s);
	for(int i=1;i<=n;i++)
	{
		scanf("%d%d",&t[i],&fi[i]);
		t[i]+=t[i-1];fi[i]+=fi[i-1];f[i]=2139062143;
	}
	for(int i=1;i<=n;i++)
	  for(int j=1;j<=i;j++)
	    f[i]=min(f[i],f[j-1]+s*(fi[n]-fi[j-1])+t[i]*(fi[i]-fi[j-1]));
	printf("%d\n",f[n]);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值