洛谷 P5785 [SDOI2012]任务安排 P2365 任务安排

PS:如果读过题了可以跳过题目描述直接到题解部分
提交链接1(数据较强):洛谷 P5785 [SDOI2012]任务安排
提交链接2(数据较弱):洛谷 P2365 任务安排

题目

题目描述

机器上有 n n n 个需要处理的任务,它们构成了一个序列。这些任务被标号为 1 1 1 n n n,因此序列的排列为 1 , 2 , 3 ⋯ n 1 , 2 , 3 \cdots n 1,2,3n。这 n n n 个任务被分成若干批,每批包含相邻的若干任务。从时刻 0 0 0 开始,这些任务被分批加工,第 i i i 个任务单独完成所需的时间是 T i T_i Ti。在每批任务开始前,机器需要启动时间 s s s,而完成这批任务所需的时间是各个任务需要时间的总和。

注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数 C i C_i Ci

请确定一个分组方案,使得总费用最小。

输入格式

第一行一个整数 n n n
第二行一个整数 s s s

接下来 n n n 行,每行有一对整数,分别为 T i T_i Ti C i C_i Ci,表示第 i i i 个任务单独完成所需的时间是 T i T_i Ti 及其费用系数 C i C_i Ci

输出格式

一行,一个整数,表示最小的总费用。

样例 #1

样例输入 #1

5
1
1 3
3 2
4 3
2 3
1 4

样例输出 #1

153

提示

对于 100 % 100\% 100% 数据, 1 ≤ n ≤ 3 × 1 0 5 1 \le n \le 3 \times 10^5 1n3×105 1 ≤ s ≤ 2 8 1 \le s \le 2^8 1s28 ∣ T i ∣ ≤ 2 8 |T_i | \le 2^8 Ti28 0 ≤ C i ≤ 2 8 0 \le C_i \le 2^8 0Ci28

题解

我们可以先推一下状态转移方程:
先假设 f i f_i fi表示我们把某一批任务从第 i i i个任务分段断开时的最小费用。
c i c_i ci, t i t_i ti均为原题面中的 c c c t t t的前缀和。
f i = m i n j = 0 i − 1 ( f j + s × ( c n − c j ) + t i × ( c i − c j ) ) f_i=min_{j=0}^{i-1}(f_j+s\times (c_n-c_j)+t_i\times (c_i-c_j)) fi=minj=0i1(fj+s×(cncj)+ti×(cicj))

但这样循环,较强的数据肯定会T。

所以我们需要进行斜率优化:
暂且忽略掉取最小值。
f i = f j + s × ( c n − c j ) + t i × ( c i − c j ) f_i=f_j+s\times (c_n-c_j)+t_i\times (c_i-c_j) fi=fj+s×(cncj)+ti×(cicj)
f i = f j + s × c n − s × c j + t i × c i − t i × c j f_i=f_j+s\times c_n-s\times c_j+t_i\times c_i-t_i\times c_j fi=fj+s×cns×cj+ti×citi×cj
f j = ( s + t i ) × c j + f i − t i × c i − s × c n f_j=(s+t_i)\times c_j+f_i-t_i\times c_i-s\times c_n fj=(s+ti)×cj+fiti×cis×cn
然后我们就可以代入 y = k x + b y=kx+b y=kx+b:

y y y k k k x x x b b b
f j f_j fj s + t i s+t_i s+ti c j c_j cj f i − t i × c i − s × c n f_i-t_i\times c_i-s\times c_n fiti×cis×cn

代码实现

100pts

//洛谷 P5785 [SDOI2012]任务安排 P2365 任务安排
#pragma GCC optimize(3)
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
long long n;
long long s;
long long t[300010];//前缀和 
long long c[300010];//前缀和
long long f[300010];
long long q[300010];
long long head,tail;
long long l,r;

void re(long long &x){
	int nt,neg=0;
	x=0;
	while(!isdigit(nt=getchar())){
		if(nt=='-'){
			neg=1;
		}
	}
	x=nt^'0';
	while(isdigit(nt=getchar())){
		x=(x<<3)+(x<<1)+(nt^'0');
	}
	if(neg){
		x=-x;
	}
}

int main(){
	register long long i,j,mid;
	re(n),re(s);
	for(i=1;i<=n;++i){
		re(t[i]),re(c[i]);
		t[i]+=t[i-1];
		c[i]+=c[i-1];
	}
	memset(f,0x7fffffff,sizeof(f));
	head=1;
	tail=1;
	f[0]=0;
	for(i=1;i<=n;++i){
		if(head==tail){
			j=q[head];
		}
		else{
			l=head;
			r=tail;
			while(l<r){
				mid=l+r>>1;
				if(f[q[mid+1]]-f[q[mid]]<=(s+t[i])*(c[q[mid+1]]-c[q[mid]])){
					l=mid+1;
				}
				else{
					r=mid;
				}
			}
			j=q[l];
		}
		f[i]=f[j]-(s+t[i])*c[j]+t[i]*c[i]+s*c[n];
		while(head<tail&&(f[q[tail]]-f[q[tail-1]])*(c[i]-c[q[tail]])>=(f[i]-f[q[tail]])*(c[q[tail]]-c[q[tail-1]])){
			--tail;
		}
		q[++tail]=i;
	}
	printf("%lld\n",f[n]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月半流苏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值