PS:如果读过题了可以跳过题目描述直接到题解部分
提交链接1(数据较强):洛谷 P5785 [SDOI2012]任务安排
提交链接2(数据较弱):洛谷 P2365 任务安排
题目
题目描述
机器上有 n n n 个需要处理的任务,它们构成了一个序列。这些任务被标号为 1 1 1 到 n n n,因此序列的排列为 1 , 2 , 3 ⋯ n 1 , 2 , 3 \cdots n 1,2,3⋯n。这 n n n 个任务被分成若干批,每批包含相邻的若干任务。从时刻 0 0 0 开始,这些任务被分批加工,第 i i i 个任务单独完成所需的时间是 T i T_i Ti。在每批任务开始前,机器需要启动时间 s s s,而完成这批任务所需的时间是各个任务需要时间的总和。
注意,同一批任务将在同一时刻完成。每个任务的费用是它的完成时刻乘以一个费用系数 C i C_i Ci。
请确定一个分组方案,使得总费用最小。
输入格式
第一行一个整数
n
n
n。
第二行一个整数
s
s
s。
接下来 n n n 行,每行有一对整数,分别为 T i T_i Ti 和 C i C_i Ci,表示第 i i i 个任务单独完成所需的时间是 T i T_i Ti 及其费用系数 C i C_i Ci。
输出格式
一行,一个整数,表示最小的总费用。
样例 #1
样例输入 #1
5
1
1 3
3 2
4 3
2 3
1 4
样例输出 #1
153
提示
对于 100 % 100\% 100% 数据, 1 ≤ n ≤ 3 × 1 0 5 1 \le n \le 3 \times 10^5 1≤n≤3×105, 1 ≤ s ≤ 2 8 1 \le s \le 2^8 1≤s≤28, ∣ T i ∣ ≤ 2 8 |T_i | \le 2^8 ∣Ti∣≤28, 0 ≤ C i ≤ 2 8 0 \le C_i \le 2^8 0≤Ci≤28。
题解
我们可以先推一下状态转移方程:
先假设
f
i
f_i
fi表示我们把某一批任务从第
i
i
i个任务分段断开时的最小费用。
c
i
c_i
ci,
t
i
t_i
ti均为原题面中的
c
c
c和
t
t
t的前缀和。
f
i
=
m
i
n
j
=
0
i
−
1
(
f
j
+
s
×
(
c
n
−
c
j
)
+
t
i
×
(
c
i
−
c
j
)
)
f_i=min_{j=0}^{i-1}(f_j+s\times (c_n-c_j)+t_i\times (c_i-c_j))
fi=minj=0i−1(fj+s×(cn−cj)+ti×(ci−cj))
但这样循环,较强的数据肯定会T。
所以我们需要进行斜率优化:
暂且忽略掉取最小值。
f
i
=
f
j
+
s
×
(
c
n
−
c
j
)
+
t
i
×
(
c
i
−
c
j
)
f_i=f_j+s\times (c_n-c_j)+t_i\times (c_i-c_j)
fi=fj+s×(cn−cj)+ti×(ci−cj)
f
i
=
f
j
+
s
×
c
n
−
s
×
c
j
+
t
i
×
c
i
−
t
i
×
c
j
f_i=f_j+s\times c_n-s\times c_j+t_i\times c_i-t_i\times c_j
fi=fj+s×cn−s×cj+ti×ci−ti×cj
f
j
=
(
s
+
t
i
)
×
c
j
+
f
i
−
t
i
×
c
i
−
s
×
c
n
f_j=(s+t_i)\times c_j+f_i-t_i\times c_i-s\times c_n
fj=(s+ti)×cj+fi−ti×ci−s×cn
然后我们就可以代入
y
=
k
x
+
b
y=kx+b
y=kx+b:
y y y | k k k | x x x | b b b |
---|---|---|---|
f j f_j fj | s + t i s+t_i s+ti | c j c_j cj | f i − t i × c i − s × c n f_i-t_i\times c_i-s\times c_n fi−ti×ci−s×cn |
代码实现
100pts
//洛谷 P5785 [SDOI2012]任务安排 P2365 任务安排
#pragma GCC optimize(3)
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
long long n;
long long s;
long long t[300010];//前缀和
long long c[300010];//前缀和
long long f[300010];
long long q[300010];
long long head,tail;
long long l,r;
void re(long long &x){
int nt,neg=0;
x=0;
while(!isdigit(nt=getchar())){
if(nt=='-'){
neg=1;
}
}
x=nt^'0';
while(isdigit(nt=getchar())){
x=(x<<3)+(x<<1)+(nt^'0');
}
if(neg){
x=-x;
}
}
int main(){
register long long i,j,mid;
re(n),re(s);
for(i=1;i<=n;++i){
re(t[i]),re(c[i]);
t[i]+=t[i-1];
c[i]+=c[i-1];
}
memset(f,0x7fffffff,sizeof(f));
head=1;
tail=1;
f[0]=0;
for(i=1;i<=n;++i){
if(head==tail){
j=q[head];
}
else{
l=head;
r=tail;
while(l<r){
mid=l+r>>1;
if(f[q[mid+1]]-f[q[mid]]<=(s+t[i])*(c[q[mid+1]]-c[q[mid]])){
l=mid+1;
}
else{
r=mid;
}
}
j=q[l];
}
f[i]=f[j]-(s+t[i])*c[j]+t[i]*c[i]+s*c[n];
while(head<tail&&(f[q[tail]]-f[q[tail-1]])*(c[i]-c[q[tail]])>=(f[i]-f[q[tail]])*(c[q[tail]]-c[q[tail-1]])){
--tail;
}
q[++tail]=i;
}
printf("%lld\n",f[n]);
return 0;
}