题目描述
又到暑假了,住在城市A的Car想和朋友一起去城市B旅游。她知道每个城市都有四个飞机场,分别位于一个矩形的四个顶点上,同一个城市中两个机场之间有一条笔直的高速铁路,第I个城市中高速铁路了的单位里程价格为Ti,任意两个不同城市的机场之间均有航线,所有航线单位里程的价格均为t。
图例(从上而下)
机场 高速铁路
飞机航线
注意:图中并没有
标出所有的铁路与航线。
那么Car应如何安排到城市B的路线才能尽可能的节省花费呢?她发现这并不是一个简单的问题,于是她来向你请教。
找出一条从城市A到B的旅游路线,出发和到达城市中的机场可以任意选取,要求总的花费最少。
输入输出格式
输入格式:
第一行为一个正整数n(0<=n<=10),表示有n组测试数据。
每组的第一行有四个正整数s,t,A,B。
S(0<S<=100)表示城市的个数,t表示飞机单位里程的价格,A,B分别为城市A,B的序号,(1<=A,B<=S)。
接下来有S行,其中第I行均有7个正整数xi1,yi1,xi2,yi2,xi3,yi3,Ti,这当中的(xi1,yi1),(xi2,yi2),(xi3,yi3)分别是第I个城市中任意三个机场的坐标,T I为第I个城市高速铁路单位里程的价格。
输出格式:
共有n行,每行一个数据对应测试数据。 保留一位小数
输入输出样例
1 3 10 1 3 1 1 1 3 3 1 30 2 5 7 4 5 2 1 8 6 8 8 11 6 3
47.5
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SPFA+数论(图论?)~
写代码一节课,检查三节课……double和int一定要分清啊啊啊啊!
SPFA部分就不说了,主要是给出三个点求第四个点和点之间建边比较麻烦,用到了向量,具体的不好说,看代码吧~
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<queue>
using namespace std;
int n,s,t,A,B,fi[401],w[340001],ne[340001],cnt,x[5][401],y[5][401],val;
double v[340001],dis[401],minn;
bool b[401];
queue<int> q;
void add(int u,int vv,double val1)
{
w[++cnt]=vv;v[cnt]=val1;ne[cnt]=fi[u];fi[u]=cnt;
}
double cal(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
double cal2(int x1,int y1,int x2,int y2)
{
return (x1-x2)*(x1-x2)+(y1-y2)*(y1-y2);
}
void getn(int u)
{
double k[4]={0,cal2(x[1][u],y[1][u],x[2][u],y[2][u]),
cal2(x[2][u],y[2][u],x[3][u],y[3][u]),
cal2(x[3][u],y[3][u],x[1][u],y[1][u])},tot=k[1]+k[2]+k[3];
int fre,num[3]={0};
for(int i=1;i<=3;i++)
if(k[i]*2==tot) fre=(i==1 ? 3:i-1);
else num[++num[0]]=(i==1 ? 3:i-1);
x[4][u]=x[num[1]][u]+x[num[2]][u]-x[fre][u];
y[4][u]=y[num[1]][u]+y[num[2]][u]-y[fre][u];
}
int main()
{
scanf("%d",&n);
while(n--)
{
scanf("%d%d%d%d",&s,&t,&A,&B);minn=999999999;
memset(fi,0,sizeof(fi));cnt=0;
for(int k=1;k<=s;k++)
{
scanf("%d%d%d%d%d%d%d",&x[1][k],&y[1][k],&x[2][k],&y[2][k],&x[3][k],&y[3][k],&val);
getn(k);
for(int i=1;i<=3;i++)
for(int j=i+1;j<=4;j++)
{
double kkz=cal(x[i][k],y[i][k],x[j][k],y[j][k])*(double)val;
add(4*k+i-4,4*k+j-4,kkz);add(4*k+j-4,4*k+i-4,kkz);
}
}
for(int k1=1;k1<s;k1++)
for(int k2=k1+1;k2<=s;k2++)
for(int i=1;i<=4;i++)
for(int j=1;j<=4;j++)
{
double kkz=cal(x[i][k1],y[i][k1],x[j][k2],y[j][k2])*(double)t;
add(4*k1-4+i,4*k2-4+j,kkz);add(4*k2-4+j,4*k1-4+i,kkz);
}
for(int i=1;i<=4;i++)
{
memset(dis,127,sizeof(dis));
q.push(A*4-4+i);b[A*4-4+i]=1;dis[A*4-4+i]=0;
while(!q.empty())
{
int k=q.front();q.pop();b[k]=0;
for(int j=fi[k];j;j=ne[j])
if(dis[w[j]]>dis[k]+v[j])
{
dis[w[j]]=dis[k]+v[j];
if(!b[w[j]])
{
b[w[j]]=1;q.push(w[j]);
}
}
}
for(int j=1;j<=4;j++)
if(dis[B*4-4+j]<minn) minn=dis[B*4-4+j];
}
printf("%.1lf\n",minn);
}
return 0;
}