POJ 3237 Tree

Description

You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edges are numbered 1 through N − 1. Each edge is associated with a weight. Then you are to execute a series of instructions on the tree. The instructions can be one of the following forms:

CHANGE i vChange the weight of the ith edge to v
NEGATE a bNegate the weight of every edge on the path from a to b
QUERY a bFind the maximum weight of edges on the path from a to b

Input

The input contains multiple test cases. The first line of input contains an integer t (t ≤ 20), the number of test cases. Then follow the test cases.

Each test case is preceded by an empty line. The first nonempty line of its contains N (N ≤ 10,000). The next N − 1 lines each contains three integers ab and c, describing an edge connecting nodes a and bwith weight c. The edges are numbered in the order they appear in the input. Below them are the instructions, each sticking to the specification above. A lines with the word “DONE” ends the test case.

Output

For each “QUERY” instruction, output the result on a separate line.

Sample Input

1

3
1 2 1
2 3 2
QUERY 1 2
CHANGE 1 3
QUERY 1 2
DONE

Sample Output

1
3

Source

POJ Monthly--2007.06.03, Lei, Tao

~~~~~~~~~~~~~~~~~~~~~~~~~~~

树链剖分~

——5.25 遗留的千年老问题终于解决掉了……泪流满面……

这道题就比SPOJ QTREE多了一个反转操作(即max=-min,min=-max的操作),但是完全不能用那种方法。修改需要求lca后把答案分为两条直链分别计算。我们在树上打上懒标记,就能很方便地更新结果(但是也很容易出错)。

注意:

1.分清k<<1和a[k].l;

2.加边一定要在dfs的时候加,在主函数里面会出错,我不知道为什么。


#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
#define inf 999999999

int t,n,x,y,z,fi[10001],w[20001],ne[20001],v[20001],cnt,dep[10001],son[10001],top[10001],siz[10001],id[10001],to[10001],fa[10001][14];
char ch[10];

struct node1{
	int x,y,val;
}ed[20001];

struct node{
	int l,r,mn,mx;
	bool tag;
}a[10001<<2];

int read()
{
	int x=0,f=1;char ch=getchar();
	while(ch<'0' || ch>'9') {if(ch=='-') f=-1;ch=getchar();}
	while(ch>='0' && ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
	return x*f;
}

void add(int u,int vv,int val)
{
	w[++cnt]=vv;ne[cnt]=fi[u];fi[u]=cnt;v[cnt]=val;
	w[++cnt]=u;ne[cnt]=fi[vv];fi[vv]=cnt;v[cnt]=val;
}

void update(int k)
{
	a[k].mn=min(a[k<<1].mn,a[k<<1|1].mn);
	a[k].mx=max(a[k<<1].mx,a[k<<1|1].mx);
}

void solve(node &u)
{
	swap(u.mn,u.mx);u.mn*=-1;u.mx*=-1;
}

void pushdown(int k)
{
	int l=k<<1,r=k<<1|1;
	a[k].tag=0;a[l].tag^=1;a[r].tag^=1;
	solve(a[l]);solve(a[r]);
}

void build(int l,int r,int k)
{
	a[k].l=l;a[k].r=r;a[k].tag=0;a[k].mn=inf;a[k].mx=-inf;
	if(l==r) return;
	int mid=l+r>>1;
	build(l,mid,k<<1);build(mid+1,r,k<<1|1);
}

void chan(int k,int u,int v)
{
	int l=a[k].l,r=a[k].r,mid=l+r>>1;
	if(l==r)
	{
		a[k].mn=a[k].mx=v;return;
	}
	if(a[k].tag) pushdown(k);
	if(u<=mid) chan(k<<1,u,v);
	else chan(k<<1|1,u,v);
	update(k);
}

void dfs1(int u)
{
	for(int i=1;i<=13;i++) fa[u][i]=fa[fa[u][i-1]][i-1];
	son[u]=0;siz[u]=1;
	for(int i=fi[u];i;i=ne[i])
	  if(w[i]!=fa[u][0])
	  {
	  	fa[w[i]][0]=u;dep[w[i]]=dep[u]+1;dfs1(w[i]);siz[u]+=siz[w[i]];
	  	if(!son[u] || siz[son[u]]<siz[w[i]]) son[u]=w[i];
	  }
}

void dfs2(int u,int la)
{
	top[u]=la;id[u]=++cnt;
	if(son[u]) dfs2(son[u],la);
	for(int i=fi[u];i;i=ne[i])
	  if(w[i]!=son[u] && w[i]!=fa[u][0]) dfs2(w[i],w[i]);
	  else if(w[i]==fa[u][0])
	  {
	  	to[i>>1]=id[u];chan(1,id[u],v[i]);
	  }
}

void rever(int k,int u,int v)
{
	int l=a[k].l,r=a[k].r,mid=l+r>>1;
	if(a[k].tag && l!=r) pushdown(k);
	if(l>=u && r<=v)
	{
		solve(a[k]);a[k].tag=1;return;
	}
	if(u<=mid) rever(k<<1,u,v);
	if(v>mid) rever(k<<1|1,u,v);
	update(k);
}

int lca(int u,int v)
{
	if(dep[u]<dep[v]) swap(u,v);
	for(int i=13;~i;i--) if(dep[fa[u][i]]>=dep[v]) u=fa[u][i];
	if(u==v) return u;
	for(int i=13;~i;i--) if(fa[u][i]!=fa[v][i]) u=fa[u][i],v=fa[v][i];
	return fa[u][0];
}

int cal(int k,int u,int v)
{
	int l=a[k].l,r=a[k].r,mid=l+r>>1,now=-inf;
	if(a[k].tag && l!=r) pushdown(k);
	if(l>=u && r<=v) return a[k].mx;
	if(mid>=u) now=max(now,cal(k<<1,u,v));
	if(v>mid) now=max(now,cal(k<<1|1,u,v));
	return now; 
}

int mx(int u,int v)
{
	int now=-inf;
	while(top[u]!=top[v])
	{
		now=max(now,cal(1,id[top[u]],id[u]));u=fa[top[u]][0];
	}
	if(id[v]+1<=id[u]) now=max(now,cal(1,id[v]+1,id[u]));
	return now;
}

int rev(int u,int v)
{
	while(top[u]!=top[v])
	{
		rever(1,id[top[u]],id[u]);u=fa[top[u]][0];
	}
	if(id[v]+1<=id[u]) rever(1,id[v]+1,id[u]);
}

int main()
{
	t=read();
	while(t--)
	{
		memset(fa,0,sizeof(fa));cnt=0;
		memset(fi,0,sizeof(fi));n=read();
		for(int i=1;i<n;i++)
		{
			x=read(),y=read(),z=read(),add(x,y,z);
			ed[i]=(node1){x,y,z};
		}
		cnt=0;build(1,n,1);dfs1(1);dfs2(1,1);
		while(scanf("%s",ch))
		{
			if(ch[0]=='D') break;
			x=read();y=read();
			if(ch[0]=='C') chan(1,id[ed[x].x],y);
			else if(ch[0]=='N')
			{
				int k=lca(x,y);rev(x,k);rev(y,k);
			}
			else
			{
				int k=lca(x,y);printf("%d\n",max(mx(x,k),mx(y,k)));
			}
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值