BZOJ 1016 [JSOI2008] 最小生成树计数

216 篇文章 0 订阅
48 篇文章 0 订阅

Description

  现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

  第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

  输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8

HINT

Source

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

kruskal+dfs+乘法原理~

刚开始以为是行列式啊QAQ

结果很high地写完了才发现是“最小生成树”不是“生成树”……

结果居然只要kruskal+dfs就可以了……

(据说行列式也能做,有时间可以看一下~)

好久没有写kruskal,结果忘了预处理fa[i]……复习真的很重要啊2333

具体做法是:先kruskal一下,顺便求出每种权值的边需要的条数以及同权值边的序号范围,然后dfs看每组同权值边有几种方法组成生成树,然后由于乘法原理,直接把所有种类数乘起来就是结果了~


#include<cstdio>
#include<algorithm>
using namespace std;
#define modd 31011

int n,m,sum,ans,cnt,x,y,tot,fa[101];

struct node{
	int x,y,val;
}a[1001];

struct numb{
	int l,r,num;
}c[1001];

bool cmp(node u,node v)
{
	return u.val<v.val;
}

int findd(int u)
{
	return fa[u]==u ? u:findd(fa[u]);
}

void dfs(int u,int v,int k)
{
	if(v==c[u].r+1)
	{
		if(k==c[u].num) sum++;return;
	}
	int xx=findd(a[v].x),yy=findd(a[v].y);
	if(xx!=yy)
	{
		fa[xx]=yy;dfs(u,v+1,k+1);fa[xx]=xx;fa[yy]=yy;
	}
	dfs(u,v+1,k);
}

int main()
{
	scanf("%d%d",&n,&m);ans=1;
	for(int i=1;i<=n;i++) fa[i]=i;
	for(int i=1;i<=m;i++) scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].val);
	sort(a+1,a+m+1,cmp);
	for(int i=1;i<=m;i++)
	{
		if(a[i].val!=a[i-1].val) c[cnt].r=i-1,c[++cnt].l=i;
		x=findd(a[i].x);y=findd(a[i].y);
		if(x!=y) fa[x]=y,c[cnt].num++,tot++;
	}
	if(tot!=n-1)
	{
		printf("0\n");return 0;
	}
	c[cnt].r=m;
	for(int i=1;i<=n;i++) fa[i]=i;
	for(int i=1;i<=cnt;i++)
	{
		sum=0;dfs(i,c[i].l,0);
		ans=(ans*sum)%modd;
		for(int j=c[i].l;j<=c[i].r;j++)
		  if((x=findd(a[j].x))!=(y=findd(a[j].y))) fa[x]=y;
	}
	printf("%d\n",ans);
	return 0;
}




  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值