Description
费尽周折,终于将众将士的残骸运送到了KD军事基地地底层的大型墓地入口。KD的伙伴和战友们都参加了这次重大的送葬仪式。右边是一扇敞开的大门,进去便是墓地了,左边是一堵凹进去的墙,没有什么特别的地方。 部队缓缓进入右边的门,一切。。。就这么结束了么。。。。。 此时, F却没有跟上队伍,在一般MM都会有的强烈的第六感之下,她来到了左边这堵墙前一探究竟。扫去了重重的灰尘之后,墙上一块凹进去的手掌印清晰可见了。F试着用自己的手对上去,竟刚好合适。稍微用力一按,顿时一声巨响,地上马上裂开一大洞,F和那厚重的墙瞬间一起落入深渊!当其他人听见了巨大的声响而赶来的时候,一切都恢复平静了。只有那堵墙后面的世界,震惊了所有生物。这到底是什么,为什么会在墓地里面? 墙的后面是一个巨大的迷宫!简单的一行字浮现在了一侧的墙上:猛烈撞击所有发亮的机关石。当大伙好奇的蜂拥进迷宫的时候,一块莫名其妙的巨石竟从入口上方落下,将入口完全堵死了!石头上清晰的写了一行字:超过规定时间不能完成任务,全部人都会困死于此。看来,只有硬着头皮去闯,才有可能离开这里,并且探索出这个迷宫的秘密了。 于是大家马上散开,很快摸清了这里的地形,剩下的任务就是轰击石头了。那么。。。论攻击力最高的,自然非功夫DP莫属,而且功夫DP可以使用前滚翻移动法,能够瞬间获得巨大的初速度,并且在直线运动的时候速度将近似光速,质量无穷大,那动能自然就。。。。。。DP每次可以选择朝一个方向滚动,并且可以自己选择在某位置停下来,或者撞击到墙和石头的时候被迫停下来。由于直线速度过快,所以要停下来拐弯自然就是很麻烦的事情。那么只有制定出一个最好的运动方法,使得DP停下来次数最少,才能争取尽量多的时间!
Input
第一行3个正整数N、M和T。表示这是一个N*M的迷宫,并且有T个机关石。 接下来用一个N*M的字符矩阵描述迷宫,.表示是空地,#表示是墙。 接下来T行每行2个正整数X、Y,描述一个机关石的位置,它在迷宫对应的位置是#。不会有两个机关石在同一位置。 最后一行2个正整数X0、Y0,表示DP的初始位置。
Output
一个正整数ANS,表示DP至少要停下来多少次才能撞击完所有的机关石。
Sample Input
4 6 3
……
….#.
…..#
….#.
2 5
3 6
4 5
1 5
……
….#.
…..#
….#.
2 5
3 6
4 5
1 5
Sample Output
5
HINT
数据规模:
对于10%的数据,N、M<=10,T<=2;
对于40%的数据,N、M<=50,T<=10;
对于100%的数据,N、M<=100,T<=15;
注意事项:
迷宫的最外层是墙,即任何时候不可能滚出迷宫,墙是撞不烂的(好硬)!
每次DP只能选择4个基本方向中的一个方向移动,每块机关石都必须被撞击,撞击后变成普通的墙。
Source
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
状压DP+SPFA~
对于每一个机关石搜索它的四个方向的石头,然后SPFA便利遍历,求两块机关石之间的最少转弯次数,然后把起点也当做一块机关石来遍历一遍求出到所有机关石的距离,最后状压DP即可~
这里SPFA的更新方式很神奇,建议看一下代码,在函数findd里面。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
using namespace std;
#define inf 999999999
#define id(u,v) (u-1)*4+v+1
int n,m,t,xx,yy,x[16],y[16],ch[2][4]={{0,1,0,-1},{1,0,-1,0}},dis[62][62],d[101][101][4],tot,ans,f[65536][62];
bool b[101][101],roc[101][101];
char s[101];
void findd(int u,int v,int id)
{
if(roc[u][v] || !u || !v || u>n || v>m) return;
queue<int> qx,qy;qx.push(u);qy.push(v);b[u][v]=1;
memset(d,127/3,sizeof(d));
for(int i=0;i<4;i++) d[u][v][i]=0;
while(!qx.empty())
{
int x1=qx.front(),y1=qy.front();qx.pop();qy.pop();
for(int i=0;i<4;i++)
{
int x2=x1+ch[0][i],y2=y1+ch[1][i];
if(roc[x2][y2] || !x2 || !y2 || x2>n || y2>m) continue;
for(int j=0;j<4;j++)
if(d[x1][y1][i]+(i!=j)<d[x2][y2][j])
{
d[x2][y2][j]=d[x1][y1][i]+(i!=j);
if(!b[x2][y2])
{
b[x2][y2]=1;qx.push(x2);qy.push(y2);
}
}
}
b[x1][y1]=0;
}
for(int i=1;i<=t;i++)
for(int j=0;j<4;j++)
{
int x1=x[i]+ch[0][j],y1=y[i]+ch[1][j],now=inf;
for(int k=0;k<4;k++) now=min(now,d[x1][y1][k]+(x1+ch[0][k]!=x[i] || y1+ch[1][k]!=y[i]));
dis[id][id(i,j)]=now;
}
}
int main()
{
scanf("%d%d%d",&n,&m,&t);tot=(1<<t)-1;ans=inf;
for(int i=1;i<=n;i++)
{
scanf("%s",s+1);
for(int j=1;j<=m;j++) if(s[j]=='#') roc[i][j]=-1;
}
for(int i=1;i<=t;i++) scanf("%d%d",&x[i],&y[i]);
for(int i=1;i<=t;i++)
for(int k=0;k<4;k++) findd(x[i]+ch[0][k],y[i]+ch[1][k],id(i,k));
scanf("%d%d",&xx,&yy);
findd(xx,yy,4*t+1);
for(int k=0;k<=tot;k++)
for(int i=1;i<=4*t+1;i++) f[k][i]=inf;f[0][4*t+1]=0;
for(int k=0;k<=tot;k++)
for(int i=1;i<=4*t+1;i++)
if(f[k][i]!=inf)
for(int j=1;j<=4*t;j++) f[k|(1<<((j-1)/4))][j]=min(f[k|(1<<((j-1)/4))][j],f[k][i]+dis[i][j]+1);
for(int i=1;i<=4*t;i++) ans=min(ans,f[tot][i]);
printf("%d\n",ans);
return 0;
}