题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695
题 意:在[1,b]和[1,d]中各选一个数x,y,是的GCD(x,y)=k,求满足的(x,y)对数,(x,y)和(y,x)算一种。
思 路:等价于求1~b/k和1~d/k减质数的问题,可以设置y>x来保持唯一性。
再者有两种情况:
1:y<=b,则对数就是1~a的欧拉函数的累计和。
2:y>= b,则可以用容斥定理把y与1~b互质化为求[b,d]中的每一个数在[1,d]互素的数的和。
代码如下:
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
typedef __int64 LL;
const int MAXN = 10000;
int euler[100010];
void getEuler()
{
memset(euler,0,sizeof(euler));
euler[1] = 1;
for(int i = 2;i <= 100000;i++)
if(!euler[i])
for(int j = i; j <= 100000;j += i)
{
if(!euler[j])
euler[j] = j;
euler[j] = euler[j]/i*(i-1);
}
}
LL solve( LL n, LL r )//求出区间[1,r]捏与n互素的数的个数
{
vector<LL>v;
for( LL i = 2; i*i <= n; i ++ )//求n的素因子
if( n%i == 0 )
{
v.push_back(i);
while( n%i == 0 )
n /= i;
}
if( n > 1 ) v.push_back(n);
LL sum = 0;
for( LL num = 1; num < ( 1 << v.size() ); num++ )//求出与n不互素的数的个数sum
{
LL m = 1, bit = 0;
for( LL i = 0; i < (LL)v.size(); i ++ )
if( num & ( 1<<i ) )
{
bit++;
m *= v[i];
}
LL cur = r/m;
if( bit%2 == 1 ) sum += cur;
else sum -= cur;
}
return r - sum;
}
int main()
{
getEuler();
int a,b,c,d;
int T;
int k;
scanf("%d",&T);
int iCase = 0;
while(T--)
{
iCase++;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k == 0 || k > b || k > d)
{
printf("Case %d: 0\n",iCase);
continue;
}
if(b > d)swap(b,d);
b /= k;
d /= k;
long long ans = 0;
for(int i = 1;i <= b;i++)
ans += euler[i];
for(int i = b+1;i <= d;i++)
ans += solve(i,b);
printf("Case %d: %I64d\n",iCase,ans);
}
return 0;
}