15. 三数之和
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请
你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
提示:
3 <= nums.length <= 3000
-105 <= nums[i] <= 105
代码
/**
* @param {number[]} nums
* @return {number[][]}
*/
var threeSum = function(nums) {
const quickSort = (l, r) => {
if (l >= r) {
return
}
let mid = nums[l + r >> 1], left = l - 1, right = r + 1
while(left < right) {
do {
left ++
} while (nums[left] < mid)
do {
right --
} while (nums[right] > mid)
if (left < right) {
[nums[left], nums[right]] = [nums[right], nums[left]]
}
}
quickSort(l, right)
quickSort(right + 1, r)
}
quickSort(0, nums.length - 1)
const res =[]
for (let i = 0; i < nums.length - 2; ) {
// 这里很妙,考虑下 -1 -1 0 1 的情况,如果是 +1, 那么left就永远不可能指向-1
while(nums[i] === nums[i - 1]) i ++
for (let left = i + 1, right = nums.length - 1; left < right; ) {
const sum = nums[left] + nums[right] + nums[i]
if (sum < 0) {
left ++
} else if (sum > 0) {
right --
} else {
while (nums[left] === nums[left + 1]) left ++
while (nums[right] === nums[right - 1]) right --
res.push([nums[i], nums[left], nums[right]])
left ++
right --
}
}
i ++
}
return res
};