Python3+OpenCV(五):离散余弦变换(DCT)



1、原理

图像处理中常用的正交变换除了傅里叶变换外,还有离散余弦变换等。

离散余弦变换(Discrete Cosine Transform,DCT)是图像频域变换的一种,它类似于离散傅里叶变换(DFT for Discrete Fourier Transform,DFT),离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,但是离散余弦变换只使用实数。在傅里叶级数中,如果被展开的函数是实偶函数,那么在傅里叶级数中则只包含余弦项,再将其离散化,由此便可导出离散余弦变化。

变换后DCT系数能量主要集中在左上角,其余大部分系数接近于零,因此DCT具有适用于图像压缩的特性,用于对信号和图像(包括静止图像和运动图像)进行有损数据压缩。

其中f(x,y)是空间域二维向量之元素, x,y=0,1,2,…N-1;F(u,v)是变换系数阵列之元素。式中表示的阵列为N×N。二维离散余弦变换正变换公式:

在这里插入图片描述

2、实现

# 读取图像
cv2.imread(src, flag)

flag:用来指定图像的读取方式

  • cv2.IMREAD_COLOR(1) : 默认使用该种标识。加载一张彩色图片,忽视它的透明度。
  • cv2.IMREAD_GRAYSCALE(0) : 加载一张灰度图。
  • cv2.IMREAD_UNCHANGED(-1) : 加载图像,包括它的Alpha通道。
# 转换数组的数据类型
astype()
# 离散余弦变换
cv2.dct(src)
# 离散余弦反变换
cv2.idct(src)
import cv2
import numpy as np
import matplotlib.pyplot as plt

# 读取图像
img = cv2.imread("D:/Study/digital image processing/test/Lena.bmp",0)
# 数据类型转换 转换为浮点型
print('0\n',img)
img1 = img.astype(np.float)

# 进行离散余弦变换
img_dct = cv2.dct(img1)
print('1\n',img_dct)
# 进行log处理
img_dct_log = np.log(abs(img_dct))
print('2\n',img_dct_log)
# 进行离散余弦反变换
img_idct = cv2.idct(img_dct)
print('3\n',img_idct)
# res = img_idct.astype(np.uint8) # 浮点型转整型 小数部分截断
# print('3-1\n',res)

plt.subplot(131)
plt.imshow(img,'gray')
plt.title('original image'),plt.xticks([]),plt.yticks([])
plt.subplot(132)
plt.imshow(img_dct_log)
plt.title('DCT'),plt.xticks([]),plt.yticks([])
plt.subplot(133)
plt.imshow(img_idct,'gray')
plt.title('IDCT'),plt.xticks([]),plt.yticks([])
plt.show()

图像通过DCT变换后能量集中在左上角的低频部分(区域较亮)
在这里插入图片描述

参考博客
https://blog.csdn.net/James_Ray_Murphy/article/details/79173388

OpenCV中的离散余弦变换(Discrete Cosine Transformation,DCT)是一种频率变换方法,用于将图像从空域转换到频域。在OpenCV中,可以通过cv2.dct()函数实现离散余弦变换离散余弦变换是一种用于将图像从空域转换到频域的数学变换方法。它将图像分解为一系列的频率分量,其中低频分量代表图像的平滑部分,高频分量代表图像的细节部分。 在进行离散余弦变换之前,首先需要将图像的数据类型转换为浮点型,以便进行精确计算。然后,通过cv2.dct()函数对图像进行离散余弦变换。变换后的结果是一个与原始图像大小相同的数组,其中包含了变换后的频率分量。 根据需要,可以对变换结果进行进一步的处理,例如对数变换(np.log())或反变换(cv2.idct())。最后,可以将结果图像显示出来,以便观察变换的效果。 总结起来,OpenCV中的离散余弦变换是一种将图像从空域转换到频域的方法,通过cv2.dct()函数实现。可以对变换结果进行进一步处理,以得到所需的频率分量信息。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Python3+OpenCV):离散余弦变换(DCT)](https://blog.csdn.net/Seven_WWW/article/details/108202905)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [Opencv_100问_第八章 (36-40)](https://blog.csdn.net/Fioman_GYM/article/details/125312251)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值