1、原理
图像处理中常用的正交变换除了傅里叶变换外,还有离散余弦变换等。
离散余弦变换(Discrete Cosine Transform,DCT)是图像频域变换的一种,它类似于离散傅里叶变换(DFT for Discrete Fourier Transform,DFT),离散余弦变换相当于一个长度大概是它两倍的离散傅里叶变换,但是离散余弦变换只使用实数。在傅里叶级数中,如果被展开的函数是实偶函数,那么在傅里叶级数中则只包含余弦项,再将其离散化,由此便可导出离散余弦变化。
变换后DCT系数能量主要集中在左上角,其余大部分系数接近于零,因此DCT具有适用于图像压缩的特性,用于对信号和图像(包括静止图像和运动图像)进行有损数据压缩。
其中f(x,y)是空间域二维向量之元素, x,y=0,1,2,…N-1;F(u,v)是变换系数阵列之元素。式中表示的阵列为N×N。二维离散余弦变换正变换公式:
2、实现
# 读取图像
cv2.imread(src, flag)
flag:用来指定图像的读取方式
- cv2.IMREAD_COLOR(1) : 默认使用该种标识。加载一张彩色图片,忽视它的透明度。
- cv2.IMREAD_GRAYSCALE(0) : 加载一张灰度图。
- cv2.IMREAD_UNCHANGED(-1) : 加载图像,包括它的Alpha通道。
# 转换数组的数据类型
astype()
# 离散余弦变换
cv2.dct(src