自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

DuHz的博客

Focus on signal processing and edge computing

  • 博客(464)
  • 收藏
  • 关注

原创 最大熵方法详解

最大熵原理是信息论和统计学习中的重要概念,它基于这样一个思想:在所有满足已知约束条件的概率分布中,熵最大的分布是最合理的选择。这一原理由E.T. Jaynes在20世纪50年代提出,作为概率分布推断的基础理论。

2025-04-23 23:17:47 443

原创 贝叶斯信号处理详解

贝叶斯信号处理是一种融合概率论与信号处理的强大方法,它通过贝叶斯框架来处理信号中的不确定性。贝叶斯理论的核心是贝叶斯定理,它提供了一种在获得新证据后更新信念的方法。在信号处理中,我们经常需要从含噪声的观测中推断出原始信号,贝叶斯方法恰好提供了一个严谨的框架。贝叶斯定理可表述为:P(θ∣y)=P(y∣θ)P(θ)P(y)P(\theta|y) = \frac{P(y|\theta)P(\theta)}{P(y)}P(θ∣y)=P(y)P(y∣θ)P(θ)​其中:从信息论角度看,贝叶斯更新可以理解为从先验分布到

2025-04-23 23:00:32 606

原创 形态学滤波器详解

形态学滤波器是数字图像处理中的一类重要工具,基于数学形态学理论发展而来。它通过与结构元素的交互作用,对图像进行非线性处理,可有效地提取图像的形状特征,去除噪声,增强轮廓等。数学形态学的核心思想基于集合论,将图像视为集合。对于二值图像,可以表示为集合 X⊆Z2X \subseteq \mathbb{Z}^2X⊆Z2,其中 (i,j)∈X(i,j) \in X(i,j)∈X 代表坐标 (i,j)(i,j)(i,j) 处的像素值为1。对于灰度图像,可表示为函数 f:Z2→Rf: \mathbb{Z}^2 \rig

2025-04-22 23:59:42 435

原创 自相关滤波详解

自相关滤波是信号处理领域中一种重要的技术,它利用信号与其自身的相关性来提取有用信息,滤除噪声,增强特定信号特征。自相关是描述信号在不同时间点之间相似度的一个重要指标。对于一个确定性连续时间信号 x(t)x(t)x(t),其自相关函数 Rxx(τ)R_{xx}(\tau)Rxx​(τ) 定义为:Rxx(τ)=lim⁡T→∞12T∫−TTx(t)x(t+τ)dtR_{xx}(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t)x(t+\tau)

2025-04-22 00:32:37 514

原创 陷波滤波器详解

陷波滤波器是一种特殊的滤波器,专门设计用来抑制或消除特定频率的信号,同时对其他频率的信号几乎不产生影响。这种滤波器也被称为陷阱滤波器、带阻滤波器或带阻滤波电路。陷波滤波器的核心思想是在特定频率点(称为陷波频率或中心频率)产生极高的阻抗,从而阻止该频率的信号通过。对于理想的陷波滤波器,其传递函数在陷波频率处的增益为零,而在其他频率处的增益接近于1。实际应用中,由于物理实现的限制,无法实现理想的零增益点,但可以设计出在特定频率处具有极低增益的滤波器。陷波滤波器的基本传递函数可以表示为:H(s)=s2+ω02s2

2025-04-21 22:46:50 865

原创 H∞滤波理论详解

H∞滤波是一种强大的状态估计技术,专为处理具有建模不确定性和外部干扰的系统而设计。与经典的卡尔曼滤波不同,H∞滤波采用了一种"最坏情况"的设计理念,不要求对系统噪声有精确的统计特性了解,因此在实际应用中表现出更强的鲁棒性。H∞滤波源于鲁棒控制理论,其名称中的"H∞"表示Hardy空间中的无穷范数。在函数分析和控制理论中,Hardy空间H∞H_{\infty}H∞​是由解析函数组成的函数空间,其中函数f(z)f(z)f(z)在单位圆盘∣z∣<1|z|<1∣z∣<1内解析,且满足:∥f∥∞=sup⁡∣z∣<1∣

2025-04-21 21:30:31 673

原创 多相滤波器详解

多相滤波器是数字信号处理中的一种重要技术,特别适用于采样率变换应用。它通过将单个滤波器分解为多个"相位"子滤波器,可以有效地实现信号的抽取和插值操作。

2025-04-21 20:50:43 789

原创 多率滤波(Multirate Filtering)技术详解

多率滤波(Multirate Filtering)是数字信号处理中的一项核心技术,它通过改变信号的采样率来实现更高效的信号处理。多率信号处理的核心思想是在单一系统中使用不同的采样率处理信号。传统的信号处理系统通常在固定采样率下工作,而多率系统允许我们根据实际需求动态调整采样率,从而在保证信号质量的同时降低系统复杂度和计算负担。假设我们有一个离散时间信号 x[n]x[n]x[n],其采样率为 fsf_sfs​。多率处理允许我们将该信号的采样率提高(插值)或降低(抽取),以适应不同的处理需求。抽取(Decima

2025-04-20 23:36:48 422

原创 自适应局部迭代滤波(ALIF)详解

局部极值点与零交叉点数量相差不超过1。局部均值接近于零。SDk∑t1T∣hkt−hk−1t∣2∑t1T∣hk−1t∣2SDk​∑t1T​∣hk−1​t∣2∑t1T​∣hk​t−hk−1​t∣2​当SDkSD_kSDk​小于预设阈值(通常取0.01或0.001)时,迭代停止,认为已找到一个IMF。

2025-04-20 22:34:56 738

原创 Cohen类分布详解

时频分析是信号处理领域的一个重要分支,它研究信号在时间和频率两个维度上的联合特性。传统的傅里叶变换可以将信号从时域转换到频域,但它无法同时提供信号在时间和频率上的局部特性。为了解决这个问题,研究者们提出了各种时频分析方法,其中Cohen类分布是一类重要的时频分析工具。Cohen类分布是一族满足特定数学性质的二维时频分布函数,它们提供了信号在时频平面上的能量分布描述。这类分布包含了许多著名的时频分析方法,如Wigner-Ville分布、Choi-Williams分布和Born-Jordan分布等。在深入探讨C

2025-04-19 16:39:07 727

原创 分数阶希尔伯特变换详解

希尔伯特变换是信号处理和数学分析中的一个重要工具,它可以将实信号转换为解析信号,帮助我们更好地分析信号的频率和相位特性。而分数阶希尔伯特变换则是对传统希尔伯特变换的推广,它引入了一个分数阶参数,使变换具有更大的灵活性。在讨论分数阶希尔伯特变换之前,我们需要先了解传统的希尔伯特变换。希尔伯特变换的数学定义为:H[f(t)]=1π∫−∞∞f(τ)t−τdτH[f(t)] = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(\tau)}{t-\tau} d\tauH[f

2025-04-19 16:20:55 670

原创 Kravchuk变换详解

Kravchuk多项式是由乌克兰数学家Mikhail Kravchuk在20世纪20年代提出的一类离散正交多项式。Knpx∑k0n−1kxkN−xn−k1−pn−kpk1−pnKnp​xk0∑n​−1kkx​n−kN−x​1−pn1−pn−kpk​nnn是多项式的阶数,0≤n≤N0≤n≤Nxxx是变量,0≤x≤N0≤x≤Nppp。

2025-04-19 00:36:13 979

原创 Chirplet变换的解析

Chirplet变换是信号处理领域中一种强大而灵活的分析工具,它拓展了传统的时频分析方法,特别适合分析具有频率调制特性的非平稳信号。在深入探讨Chirplet变换之前,我们需要了解其产生的背景。传统的时频分析方法如短时傅里叶变换(STFT)和小波变换(WT)各有所长:STFT提供固定分辨率的时频分析,而小波变换则提供多分辨率分析能力。然而,对于具有频率快速变化特征的信号,如啁啾信号(chirp signals),这些方法往往无法提供理想的时频表示。Chirplet变换正是为解决这一问题而诞生的。它结合了ST

2025-04-19 00:27:40 865

原创 沃尔什-哈达玛变换的解析

沃尔什-哈达玛变换(Walsh-Hadamard Transform,简称WHT)是信号处理领域中一种重要的正交变换方法,它使用方波函数作为基函数,而非正弦和余弦波形。作为一种全实数、二值化的变换技术,WHT具有独特的数学结构和性质。本文将从基础概念到高级理论,全面且通俗地解析沃尔什-哈达玛变换的数学基础和内在原理。沃尔什-哈达玛变换源于两位数学家的工作:约瑟夫·沃尔什(Joseph Walsh)和雅克·哈达玛(Jacques Hadamard)。1923年,沃尔什首次引入了一组完备的正交方波函数系统,称为

2025-04-18 23:59:12 396

原创 哈特利变换(Hartley transform)的解析

哈特利变换是信号处理领域中的一种重要变换方法,由美国科学家拉尔夫·哈特利(Ralph Hartley)于1942年提出。作为傅里叶变换的一种替代方法,哈特利变换具有全实数运算的特点,这使得它在某些应用场景中具有独特的优势。

2025-04-18 23:49:29 665

原创 谱峭度分析的理论基础

谱峭度作为非线性信号处理的高阶统计量,其严格数学基础可从随机过程理论出发。考虑一个非平稳随机过程Xt,其四阶谱矩定义为四阶累积量谱的归一化形式。对于频率f,谱峭度SKfSKfS2X2​fC4X​fff​S2X2​fS4X​fff​−2其中C4X​f1​f2​f3​是信号Xt的三谱累积量(即三阶多频谱),S4X​f1​f2​f3​是相应的四阶多频谱,S2X​f。

2025-04-17 23:57:15 444

原创 相位空间重构:非线性时间序列分析的基础

相位空间重构是非线性动力学系统分析中的一项基本技术,它允许我们从单变量时间序列数据中重建系统的状态空间,从而揭示系统的内在动力学特性。这项技术源于Takens嵌入定理,为研究复杂非线性系统提供了强大的分析工具。相位空间是描述动力系统所有可能状态的空间。对于一个光滑的动力系统,其演化可以表示为一阶常微分方程组:dxdt=F(x,λ,t)\frac{d\mathbf{x}}{dt} = \mathbf{F}(\mathbf{x}, \lambda, t)dtdx​=F(x,λ,t)其中x∈Rd\mathbf{x

2025-04-17 23:50:12 685

原创 高斯过程回归的解析

从概率论角度,高斯过程是函数空间上的随机过程。严格地说,若随机函数fX→RfX→R满足:对任意有限集合x1x2xn⊂Xx1​x2​...xn​⊂X,随机向量fx1fx2fxnfx1​fx2​...fxn​))服从多元高斯分布,则称fff是定义在XX上的高斯过程。

2025-04-16 19:57:07 897

原创 相位恢复(Phase Retrieval)方法详解

相位恢复是信号处理中的一个基础问题,它涉及从信号或波的振幅信息中重建其相位信息。在许多实际应用中,我们只能测量信号的强度或振幅,而相位信息却无法直接获取。然而,相位信息往往包含了关于信号的重要特征,因此如何从有限的振幅信息中恢复相位成为了一个关键挑战。

2025-04-16 19:45:01 1129

原创 曲波变换(Curvelet Transform)的原理

连续曲波变换可通过如下方式定义。考虑尺度参数a0a > 0a0,方向参数θ∈02πθ∈02π,以及平移参数b∈R2b∈R2φabθxa−34φDa−1Rθ−1x−bφabθ​xa−3/4φDa−1​Rθ−1​x−b其中DaD_aDa​Daa00aDa​a0​0a​​RθR_\thetaRθ​Rθcos⁡θ−sin。

2025-04-15 18:18:25 967

原创 Choi-Williams分布详解

时频分析是信号处理中的重要领域,旨在同时描述信号在时间和频率域的特性。传统的傅里叶变换虽然能将信号从时域转换到频域,但无法同时提供时间和频率的局部信息。而Choi-Williams分布(Choi-Williams Distribution,简称CWD)作为Cohen类时频分布的一种重要形式,提供了一种有效的方法来分析非平稳信号的时频特性,同时抑制交叉项的影响。在深入了解Choi-Williams分布之前,我们需要先理解时频分析的基本概念。对于非平稳信号,其频率内容随时间变化,这使得仅使用傅里叶变换不足以完全

2025-04-15 18:06:45 896

原创 同步挤压变换(Synchrosqueezing Transform, SST)详解

在信号处理领域,我们经常需要分析包含多个频率成分的复杂信号。传统的傅里叶变换虽然可以将信号从时域转换到频域,但它无法同时提供时间和频率的局部信息。随后发展的短时傅里叶变换(STFT)和连续小波变换(CWT)虽然能够提供时频表示,但存在时频分辨率受海森堡不确定原理限制的问题,导致时频图中能量扩散现象,使得信号的瞬时频率难以精确定位。同步挤压变换由Daubechies等人于2011年提出,旨在克服这些局限性,通过"挤压"时频平面上的能量分布,提高时频表示的分辨率和可读性。同步挤压变换的核心思想是利用信号的相位信

2025-04-14 23:31:14 850

原创 S变换(S-Transform)的数学理论详解

S变换(S-Transform)是由加拿大学者Stockwell等人于1996年提出的一种时频分析方法,它巧妙地结合了短时傅里叶变换(STFT)的相位特性和连续小波变换(CWT)的多分辨率分析能力。S变换既保留了与傅里叶变换直接联系的绝对相位信息,又具备小波变换随频率变化的分辨率特性,因此得到了广泛应用。S变换可以看作是短时傅里叶变换的一种扩展,其核心思想是使用高斯窗函数作为基本窗口,但窗口宽度会随着频率自适应调整。低频成分使用宽窗口以获得更好的频率分辨率,高频成分则使用窄窗口以获得更好的时间分辨率。这种自

2025-04-14 23:14:59 984

原创 局部线性嵌入(LLE)详解

局部线性嵌入(Locally Linear Embedding,简称LLE)是一种非线性降维技术,由Sam Roweis和Lawrence Saul于2000年提出。在数据科学和机器学习领域,我们经常面临高维数据的挑战,而降维技术能帮助我们提取数据的本质特征,简化后续分析。LLE的核心思想非常优雅:它假设高维空间中的数据点位于一个低维流形上,且每个数据点可以通过其邻近点的线性组合来表示。这种局部线性关系在降维过程中被保留,从而在低维空间中重现数据的内在结构。

2025-04-13 13:09:29 954

原创 高阶谱分析(Higher-Order Spectral Analysis,HOSA)详解

高阶谱是高阶累积量函数的多维傅里叶变换。最常用的高阶谱包括双谱(bispectrum)和三谱(trispectrum)。

2025-04-13 12:18:02 434

原创 Wigner-Ville分布:时频分析的有力工具

对于一个连续时间信号xtx(t)xtWxtf∫−∞∞xtτ2x∗t−τ2e−j2πfτdτWx​tf∫−∞∞​xt2τ​x∗t−2τ​e−j2πfτdτ其中,x∗tx^*(t)x∗t表示xtx(t)xt的复共轭,ttt是时间变量,fff是频率变量,τ\tauτ是积分变量。对于离散时间信号xnx[n]xnWxnk∑m−∞∞x。

2025-04-13 12:10:27 889

原创 非负矩阵分解(NMF)详解

非负矩阵分解(Non-negative Matrix Factorization,简称NMF)是一种在机器学习和数据挖掘领域广泛应用的矩阵分解技术。与传统的矩阵分解方法(如奇异值分解SVD)不同,NMF的最大特点是对分解后的矩阵元素施加了非负约束,这使得分解结果具有更好的可解释性,特别适合处理自然界中的非负数据,如图像、文本和音频等。

2025-04-13 11:54:07 1277

原创 离散信号的希尔伯特谱分析详解

离散信号的希尔伯特谱分析是连续信号希尔伯特谱理论在数字信号处理领域的延伸。本文将详细介绍离散希尔伯特变换、离散解析信号以及离散希尔伯特谱的构造与应用。

2025-04-12 00:33:46 850

原创 希尔伯特谱分析详解

希尔伯特谱分析是信号处理领域的重要工具,通过将时域信号转换为时频域,揭示信号的瞬时频率特性。

2025-04-12 00:25:57 914

原创 Cadence Velocity Diagrams 在毫米波雷达系统中的应用

毫米波雷达凭借其在全天候条件下的探测能力、高精度的距离和速度分辨率以及对生物体非侵入性特性,正在智能监测和人体运动分析领域获得广泛应用。在这一背景下,Cadence Velocity Diagrams(步频-速度图)作为一种分析工具,为毫米波雷达在人体运动特征提取方面提供了强大的理论支持和实际应用价值。

2025-04-12 00:18:04 823

原创 线性预测编码(LPC)系数详解

线性预测编码(Linear Predictive Coding, LPC)是一种在语音处理、音频压缩和信号分析中广泛使用的技术。它基于这样一个思想:当前的信号样本可以通过其过去若干个样本的线性组合来预测。LPC算法计算出的系数描述了这种线性关系,这些系数能够高效地表示语音信号的特征,特别是声道的共振特性。

2025-04-11 17:46:36 800

原创 二进制神经网络综述——《Binary neural networks: A survey》阅读笔记

论文《Binary neural networks: A survey》对二进制神经网络(BNNs)的研究进行了全面的概述,本文将详细介绍这篇文章。

2025-04-10 21:32:48 662

原创 快速自适应多变量多维经验模态分解详解

本文介绍了一种称为"快速自适应多变量多维经验模态分解"(Fast and Adaptive Empirical Mode Decomposition for Multidimensional, Multivariate Signals, FA-MVEMD)的新算法,它结合了经验模态分解(EMD)的多变量和多维扩展功能,为处理复杂信号提供了一种高效方法。

2025-04-10 20:03:46 1105

原创 Regenerated Phase-Shifted Sinusoid-Assisted Empirical Mode Decomposition (RPSEMD) 算法解读

经验模态分解(Empirical Mode Decomposition, EMD)是一种强大的时频分析工具,但在处理包含间歇性模态的信号时往往会遇到模态混叠问题(Mode-Mixing Problem, MMP)。它通过迭代生成自适应正弦信号并采用相位移动策略,有效解决了EMD中的MMP问题。

2025-04-10 19:43:09 634

原创 《信号从随机测量中恢复:正交匹配追踪算法》论文翻译+解读

在信号处理和压缩感知领域中,我们经常面临这样一个基本问题:如何通过尽可能少的线性测量来完整重建一个高维稀疏信号?具体来说,考虑一个ddd维实信号s∈Rd\boldsymbol{s} \in \mathbb{R}^ds∈Rd,其中只有最多mmm个非零分量(我们称之为mmm-稀疏信号)。信号的稀疏性是指向量中的大多数元素为零,即:∣s∣0=∣i:si≠0∣≤m≪d|\boldsymbol{s}|_0 = |{i : s_i \neq 0}| \leq m \ll d∣s∣0​=∣i:si​=0∣≤m≪d其

2025-04-09 19:05:18 927

原创 奇异值的最优硬阈值是 4/√3(阅读笔记)

在现代数据科学、信号处理、机器学习和统计学中,矩阵去噪是一个基础且重要的问题。考虑以下模型:我们有一个未知的低秩矩阵 X∈Rm×nX \in \mathbb{R}^{m \times n}X∈Rm×n(代表潜在的信号或结构),但我们只能观察到被噪声污染的版本:Y=X+σZY = X + \sigma ZY=X+σZ其中:• Y∈Rm×nY \in \mathbb{R}^{m \times n}Y∈Rm×n 是观察到的含噪数据矩阵• X∈Rm×nX \in \mathbb{R}^{m \times n

2025-04-09 18:12:19 828

原创 经验小波变换(EWT)详解

经验小波变换(Empirical Wavelet Transform,简称EWT)是一种较新的信号处理方法,由Gilles于2013年提出。它结合了小波分析和经验模态分解(EMD)的优点,能够自适应地将信号分解为不同频率成分。与传统小波变换使用预定义的基函数不同,EWT根据信号频谱特性自适应构建小波滤波器,从而提供更精确的时频分析。EWT在故障诊断、生物医学信号处理、图像分析等领域展现出了广泛的应用前景。

2025-04-08 21:43:08 781

原创 大语言模型中的思维链(Chain of Thought)技术

思维链(Chain of Thought, CoT)是大语言模型(Large Language Models, LLMs)领域中一项革命性的技术进步,它显著提高了模型在复杂推理任务中的表现能力。思维链本质上是一种提示技术,通过引导模型显式地展示其解决问题的中间推理步骤,而不仅仅是直接给出最终答案。这种方法模拟了人类解决问题时的思考过程,使模型能够更加系统化地分析问题,从而显著提升了模型在需要多步骤推理的复杂任务中的表现。

2025-04-08 21:31:26 783

原创 自适应短时傅立叶变换详解

傅立叶变换作为信号处理领域的基础工具,让我们能够将时域信号转换到频域进行分析。然而,经典的傅立叶变换无法提供信号的时频局部特性,这就催生了短时傅立叶变换(Short-Time Fourier Transform, STFT)的发展。而自适应短时傅立叶变换则是在STFT基础上的进一步优化,使时频分析能够更好地适应信号的非平稳特性。传统的傅立叶变换将信号从时域映射到频域,其数学表达式为:X(f)=∫−∞∞x(t)e−j2πftdtX(f) = \int_{-\infty}^{\infty} x(t) e^{-j

2025-04-07 21:41:25 955

原创 双变量经验模态分解(BEMD)详解

双变量经验模态分解(Bivariate Empirical Mode Decomposition, BEMD)是经验模态分解(EMD)的扩展,专门用于处理二维或二通道信号。它继承了EMD的自适应性和对非线性、非平稳信号的处理能力,同时能够有效地分析两个变量之间的相互关系。

2025-04-07 21:32:43 243

基于EEP-TPU的嵌入式人工智能实验手册

内容概要:本文档提供了一份详细的嵌入式人工智能实验指南,涵盖了深度学习基础、EEP-TPU张量处理器架构与开发流程。文中不仅介绍了卷积神经网络、VGG-Net、ResNet等前沿算法,还详细讲解了基于Caffe框架的深度学习分类算法实验和人脸检测实验的具体实施步骤,包括环境搭建、数据读取、网络训练、算法编译、嵌入式应用开发等各个环节。 适用人群:适用于希望深入了解嵌入式人工智能技术的研究人员、开发者和工程师,尤其是那些对深度学习和嵌入式开发有一定基础的技术人员。 使用场景及目标:本指南适合用于学术研究、产品研发和技术培训等多个场景。通过跟随文档逐步操作,可以掌握嵌入式平台上的AI应用开发全流程,能够更好地应用于智能监控、机器人视觉等领域。 其他说明:文档中包含大量实用的代码片段和技术细节,便于读者实践。同时,针对不同难度的实验提供了丰富的参考资料,确保读者可以顺利完成学习目标。

2024-10-30

伯克利博士论文:面向硬件的高效深度学习模型优化与量化研究

内容概要:本文探讨了如何在有限的计算资源下提高神经网络模型(NN)的效率。主要研究方法包括混合精度量化、Hessian分析、整数优化以及基于学习的技术如延迟和精度模拟器和块状知识蒸馏等,实现了高效的模型压缩和部署。具体成果包括通过混合精度量化实现了高达10倍的压缩比和仅1%的精度损失,提出了4位/8位混合精度模型,在Pascal VOC上达到67.1 AP50,且模型大小仅为2.9MB。 适合人群:对硬件加速和深度学习模型优化感兴趣的研究生、研究人员以及工程开发人员。 使用场景及目标:适用于需要在边缘设备、自动驾驶汽车等资源受限环境中实现实时推理和低功耗的深度学习应用场景。目的是减少内存占用、降低延时、提高能源效率同时保持高精度模型性能。 其他说明:本文详细介绍了多种硬件感知的优化技术及其实际应用案例,对于深入理解高效深度学习系统的构建有重要指导意义。

2024-10-30

基于arduino的超声测距仿真文件

基于arduino的超声测距仿真文件

2024-10-30

HC-SR04超声波模块基于arduino

HC-SR04超声波模块实例基于arduino

2024-10-30

压缩感知中的线性测量与重构算法研究

该文件是David L. Donoho在《IEEE信息论学报》上发表的一篇关于压缩感知的详细学术论文。摘要讨论了压缩感知的概念,即使用比未知向量x的维度更少的测量值来测量和重建x。当x可以通过已知变换的变换编码进行压缩时,这是可行的,从而可以大大减少所需的测量次数。论文进一步阐述了实现压缩传感的数学框架和算法,强调了某些基础(如傅里叶或小波)中信号的稀疏性,以及某些测量如何能够实现精确的重建。它解释了如何使用线性规划从测量中求解最重要的系数,这在信号处理中被称为“基础追求”方法。该论文还讨论了与压缩传感有效性相关的几个理论概念,例如Gelfand n-widths、最优恢复、基于信息的复杂性,并介绍了“非自适应测量”等术语,这些术语类似于基/帧元素的随机线性组合。 主要亮点包括: 对压缩传感的属性和边界进行了详细的理论分析。 讨论了最优恢复和基于信息的复杂性,深入探讨了压缩感知的数学基础。 介绍了实际算法,如通过压缩测量重建信号的基追算法。 探讨了压缩感知在各个领域的潜在应用,因为它在数据采集和重建方面非常高效。 总的来说,该文件从理论和实践的角度全面考察了压缩感知,强调了其在

2024-10-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除