自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

DuHz的博客

专注于信号处理与边缘计算领域

  • 博客(508)
  • 收藏
  • 关注

原创 逻辑斯谛回归(Logistic Regression)解读

逻辑斯谛回归是一种广泛应用于分类问题的机器学习算法,尽管其名称中包含“回归”,但它主要用于二分类任务。其核心思想是通过Sigmoid函数将线性模型的输出转换为概率值,从而预测样本的类别。Sigmoid函数的特性使其适合表示概率,并且其导数形式简洁,便于优化。逻辑斯谛回归的决策边界是一个超平面,将特征空间分为两个区域,分别对应不同的类别。 从数学角度看,逻辑斯谛回归可以视为广义线性模型的一种,基于指数族分布和连接函数的概念。模型参数通常通过最大似然估计进行优化,最小化交叉熵损失函数。在贝叶斯框架下,可以使用拉

2025-05-19 21:18:12 371

原创 粒子滤波器解读

粒子滤波器是一种用于估计动态系统状态的非线性滤波技术,特别适用于处理非线性和非高斯问题。其核心思想是通过一组加权样本(粒子)来近似状态的后验概率分布。每个粒子代表一个可能的状态,权重表示其概率。粒子滤波器基于贝叶斯滤波框架,通过预测和更新两个阶段递归估计状态。由于直接求解后验分布困难,粒子滤波器采用蒙特卡洛方法和重要性采样技术进行近似。然而,粒子滤波器面临粒子退化问题,即随着时间推移,大多数粒子的权重趋近于零。为解决这一问题,引入了重采样步骤,通过复制高权重粒子、舍弃低权重粒子来维持粒子的多样性。粒子滤波器

2025-05-19 21:06:11 361

原创 盲源分离解读

盲源分离(Blind Source Separation, BSS)是一种从混合信号中恢复原始信号的技术,无需依赖信号源或混合过程的先验知识。其基本模型假设源信号通过未知的混合矩阵和加性噪声生成观测信号,目标是通过分离矩阵恢复源信号。混合模型可分为瞬时线性混合、卷积混合和非线性混合三类。主要分离算法包括独立成分分析(ICA)和主成分分析(PCA)。ICA基于源信号的统计独立性,通过最大化非高斯性来分离信号,常用算法有FastICA和自然梯度算法。PCA则通过寻找数据的最大方差方向进行降维,常作为ICA的预处

2025-05-19 14:27:43 711

原创 深度神经网络模型量化参数

深度神经网络模型量化是将高精度浮点数(如FP32)表示的模型参数和计算过程转换为低精度表示(如INT8、INT4等)的过程,旨在降低计算和存储开销。量化参数包括缩放系数(Scale Factor)、零点位置(Zero Point)和量化位宽(Bit Width),用于控制浮点数与整数之间的映射关系。缩放系数定义了浮点数值与整数值的比例关系,计算方法包括基于最大值、范围、统计特性和熵的优化。零点位置用于非对称量化,确保浮点数中的零在整数域中正确映射。量化过程可视为一种有损编码,通过率失真理论优化量化参数,以最

2025-05-18 17:24:44 440

原创 深度神经网络模型量化

模型量化是一种重要的模型压缩技术,通过将高精度的浮点数参数和激活值转换为低精度的整数表示,从而减少模型存储空间并加速推理过程。量化过程可以视为一种映射函数,将连续浮点数值域映射到离散整数值域,不可避免地引入量化误差。均匀量化是最常见的量化方法,分为无符号、有符号和对称均匀量化,通过线性映射将浮点数范围映射到整数范围。非均匀量化则考虑数据分布特性,如对数量化和基于聚类的非均匀量化,在数据密集区域分配更多量化级别以提高精度。量化技术在降低计算复杂度和提高执行效率方面具有显著优势,是深度神经网络优化的重要手段。

2025-05-18 17:07:44 724

原创 深度神经网络激活值剪枝方法

深度神经网络激活值剪枝是一种有效的网络压缩技术,通过移除对输出贡献较小的激活值来降低模型复杂度和存储需求,同时保持性能。激活值剪枝关注神经元的激活输出,而非网络参数,当激活值接近零或对后续计算影响小时,可将其剪枝为零。剪枝方法包括基于阈值的剪枝、基于稀疏正则化的剪枝和动态激活剪枝。基于阈值的剪枝通过设定全局或层特定阈值实现,稀疏正则化则通过引入正则项引导激活值稀疏化,动态剪枝则根据输入数据自适应确定剪枝策略。从信息论和敏感度分析的角度,剪枝可以形式化为优化问题,通过计算激活值的重要性度量来指导剪枝过程。这些

2025-05-18 16:59:20 755

原创 半结构化剪枝技术详解

半结构化剪枝技术是深度神经网络压缩中的一种重要方法,介于非结构化剪枝和结构化剪枝之间,旨在平衡硬件友好性和压缩率。其核心思想是在保持某种结构规律的同时,允许更细粒度的权重移除,如组稀疏、块稀疏或N:M稀疏等。通过引入特定的结构约束,半结构化剪枝在权重张量或矩阵上创建规则的稀疏模式,从而实现高效的网络压缩。典型的半结构化剪枝方法包括N:M稀疏模式、结构化组稀疏和块稀疏,这些方法通过不同的正则化项和优化目标,在保持网络性能的同时显著减少参数数量。半结构化剪枝为深度神经网络的压缩和加速提供了一种灵活且有效的解决方

2025-05-17 23:52:35 532

原创 神经网络非结构化剪枝技术详解

神经网络非结构化剪枝是一种细粒度的模型压缩技术,通过移除网络中不重要的单个权重参数来减少模型参数量和计算复杂度。其核心思想是识别并移除对网络输出贡献较小的权重,从而实现更高的压缩率。非结构化剪枝通过引入二值掩码矩阵来表示权重的保留或移除,并通过优化问题来确定最优的掩码矩阵。常见的剪枝方法包括基于幅值、敏感度、优化和重要性测度的剪枝。稀疏模型需要专门的存储格式,如坐标格式和压缩稀疏行格式。此外,将剪枝与量化结合可以进一步提高压缩效果。非结构化剪枝的理论分析基于最优脑损伤理论,通过损失函数的二阶泰勒展开来评估权

2025-05-17 23:43:00 958

原创 资源约束下的结构化剪枝技术

结构化剪枝是神经网络压缩中的关键技术,通过移除整个结构单元(如通道、滤波器或层)来减小模型尺寸并提高计算效率。在资源受限的实际应用中,结构化剪枝需要在满足内存、计算能力、能耗或延迟等约束下进行。剪枝过程可形式化为约束优化问题,通过拉格朗日方法或连续松弛近似求解。常见的结构重要性评估方法包括基于范数、特征图和梯度的技术,用于确定剪枝的优先级。这些方法综合考虑了权重、特征图统计信息和梯度信息,以实现高效的模型压缩和加速。

2025-05-17 23:34:58 861

原创 深度网络瘦身术:基于搜索的结构化剪枝解析

基于搜索的结构化剪枝是一种前沿的深度学习模型压缩技术,通过移除整个结构单元(如卷积滤波器或注意力头)来降低模型大小和计算复杂度,同时保持性能。与非结构化剪枝不同,结构化剪枝允许模型在现有硬件上直接加速。实验显示,该方法在ResNet-50等模型上能减少高达50%的计算量,精度损失不到1%。结构化剪枝的数学表示涉及权重张量和二元掩码矩阵,其搜索空间呈指数增长,通常使用连续松弛或门控机制进行优化。目标函数设计为多目标优化问题,平衡模型性能与复杂度,常用方法包括拉格朗日乘数法和重要性评分。约束条件包括稀疏度、计算

2025-05-17 23:08:08 707

原创 基于权重正则的结构化剪枝:原理、方法与应用

基于权重正则化的结构化剪枝是一种有效的深度神经网络压缩技术,旨在减少模型参数量和计算量,便于在资源受限的环境中部署。权重正则化通过在损失函数中引入正则化项,如L1或L2范数,来惩罚模型参数的某些特性,从而鼓励更简单的模型结构。L1正则化(Lasso)通过将不重要的权重推向零,实现稀疏性,而L2正则化(权重衰减)则通过控制权重的大小来减少模型复杂度。此外,组套索等正则化方法能够实现结构化稀疏,使整组权重同时趋近于零。这些正则化方法不仅有助于减少过拟合,还能通过隐式特征选择区分权重的重要性,从而促进网络剪枝。数

2025-05-17 22:48:11 1137

原创 软件优化方法

软件优化是提升程序性能的关键手段,尤其在计算资源日益昂贵且性能要求不断提高的背景下,掌握优化技术尤为重要。本文详细探讨了四种核心的软件优化方法:循环结构优化、时间空间平衡、精度与性能平衡以及内存使用优化。循环结构优化通过循环展开、分块、融合和交换等技术,减少控制开销和提高缓存利用率。时间空间平衡则通过查表法、动态规划等手段,在时间和空间之间进行权衡。精度与性能平衡则通过选择不同精度的浮点数、使用快速近似算法或定点数替代浮点数,在保证精度的前提下提升性能。这些优化方法能够显著提高程序的执行效率,减少资源消耗,

2025-05-16 22:10:44 784

原创 基于向量量化的近似矩阵乘法详解

基于向量量化的近似矩阵乘法是一种高效的计算策略,旨在降低大规模矩阵乘法的计算成本和存储需求,同时保持可接受的精度。其核心思想是通过量化矩阵元素或子矩阵,减少计算复杂度。向量量化的理论基础包括率失真理论、变分推断和统计扰动理论,这些理论为量化器的设计和误差分析提供了数学依据。常见的量化技术包括标量量化、均匀量化和非均匀量化(如Lloyd算法),它们通过不同的方式优化量化误差。尽管高维数据下的量化性能受到维度灾难的影响,但向量量化仍在大规模矩阵乘法中展现出显著的计算效率优势。

2025-05-16 21:21:07 795

原创 基于数据统计相关性的近似矩阵乘法

本文探讨了基于数据统计相关性的近似矩阵乘法方法,旨在通过利用数据的统计特性来降低计算复杂度,同时保持较高的精度。文章首先介绍了数据统计相关性的数学建模,包括互信息量和最大信息系数等概念,为近似方法提供了理论基础。随后,详细阐述了基于统计采样的近似矩阵乘法,包括相关性感知采样、自适应重要性采样和多级分层采样策略,这些方法通过优化采样分布来减少计算误差。最后,文章讨论了基于统计相关性的低秩近似方法,如相关性驱动的矩阵分解,这些方法通过考虑数据的相关性结构来实现更高效的矩阵计算。总体而言,这些近似方法在处理大规模

2025-05-13 00:23:35 547

原创 近似矩阵乘法

近似矩阵乘法是一种通过牺牲一定精度来显著降低计算复杂度的技术,广泛应用于大规模数据处理和机器学习。其核心思想是通过低秩近似、随机投影或蒙特卡洛采样等方法,快速计算矩阵乘积的近似结果。低秩近似方法如奇异值分解(SVD)通过保留矩阵的主要特征值来降低计算量;随机投影方法如Johnson-Lindenstrauss变换则通过将高维数据投影到低维空间来加速计算;蒙特卡洛采样方法则通过随机采样矩阵元素来估计乘积结果。这些方法在处理大规模矩阵时,能够以较低的计算成本获得足够精确的结果,适用于对精度要求不高的场景。

2025-05-12 23:51:35 579

原创 循环矩阵乘法详解

循环矩阵是一种特殊的方阵,其每一行都是前一行的循环右移。它在信号处理、图像处理等领域有广泛应用。循环矩阵可以通过基本循环矩阵的线性组合表示,其乘法等价于首行向量的循环卷积。循环矩阵的一个重要特性是可以通过傅里叶变换对角化,这使得其乘法计算能够高效进行,时间复杂度从 (O(n^2)) 降至 (O(n\log n))。傅里叶矩阵的列向量是循环矩阵的特征向量,进一步揭示了循环矩阵与傅里叶变换的紧密联系。这些性质使得循环矩阵在数值计算和信号处理中具有重要价值。

2025-05-12 23:42:44 880

原创 二值神经网络的可解释性

二值神经网络(BNNs)通过将权重和激活值限制为二进制值,显著降低了计算复杂度,并提供了独特的可解释性优势。BNNs的核心在于其参数和激活值的二值化,这使其在存储和计算上更为高效。训练BNNs时,直通估计器(STE)和温度参数等技巧被用于解决梯度计算问题。BNNs的离散特性使其能够被简化为线性门与阈值单元的组合,并与布尔逻辑函数等价,从而增强了其可解释性。此外,BNNs可以映射到决策树结构,提供直观的解释。这些特性使BNNs在保持高效计算的同时,也具备了较强的可解释性,为理解神经网络的决策过程提供了新的视角

2025-05-10 22:49:16 476

原创 二值网络中的信息损失与保留:信息论视角分析

二值神经网络通过将传统浮点运算转化为二值运算,显著降低了计算复杂度和模型体积。然而,这种转化过程伴随着信息损失。本文从信息论视角分析了二值网络中的信息损失与保留。首先,回顾了信息论的核心概念,如信息熵、联合熵、条件熵、互信息和KL散度。接着,探讨了神经网络中的信息流动,指出信息在层间传递时逐渐减少。在二值化过程中,权重的分布从连续变为离散,导致信息损失。通过量化误差的熵和互信息分析,可以精确计算信息损失和保留率。此外,讨论了残差网络和梯度保留的理论分析,以及信息瓶颈理论在二值网络中的应用。最后,分析了二值化

2025-05-10 22:38:36 798

原创 BigVGAN声码器详解

BigVGAN是一种基于GAN的高保真神经声码器,由NAVER AI Lab于2022年提出,旨在改进现有声码器在高频细节和非周期性结构上的表现。其核心技术包括引入蛇形激活函数(Snake),该函数通过周期性非线性变换更好地捕捉音频信号中的周期性结构。BigVGAN还采用了反向蒸馏思想和倾斜窗口设计,以减少上采样过程中的混叠伪影。此外,多周期判别器和多尺度频谱损失的设计进一步提升了模型的判别能力。BigVGAN的训练过程结合了生成对抗网络框架,通过最小二乘GAN和特征匹配损失等目标函数优化模型性能。这些创新

2025-05-09 23:56:49 645

原创 WaveRNN与WaveGlow声码器详解

WaveRNN和WaveGlow是两种先进的声码器技术,用于将声学特征转换为可听的音频波形。WaveRNN由DeepMind提出,采用稀疏循环神经网络逐采样点生成波形,通过双软最大策略降低计算复杂度,并利用稀疏矩阵乘法提高效率。WaveGlow由NVIDIA提出,基于标准化流模型,通过可逆变换和耦合层实现并行波形生成,利用条件机制和类WaveNet结构处理梅尔谱条件。两种技术各有优势,WaveRNN在自回归生成中优化计算效率,而WaveGlow则通过并行化实现高效生成。

2025-05-09 23:50:27 954

原创 最小距离估计器解读

最小距离估计器(MDE)是一种通过最小化观测数据与理论模型之间“距离”来估计未知参数的统计方法。其核心思想是寻找使理论分布与实际数据分布最接近的参数值。常见的距离度量包括科尔莫哥洛夫距离、克拉默-冯·米塞斯距离、安德森-达林距离、赫林格距离和能量距离等。广义矩距离(GMM)是MDE的一种特殊形式,特别适用于经济计量学模型,通过矩条件进行参数估计。MDE方法在统计学和计量经济学中具有广泛应用,能够有效处理复杂模型的参数估计问题。

2025-05-08 21:03:34 838

原创 M‑估计器的来龙去脉

M‑估计器由 Peter J. Huber 于 1964 年提出,是对传统极大似然估计(MLE)的稳健扩展,名称中的“M”代表 maximum-likelihood-type。M‑估计器通过最小化加权损失函数来估计参数,其核心思想是使用一阶条件(M‑方程)求解。M‑估计器具有局部稳健性,当影响函数有界时,估计器对异常值不敏感。其渐近分布服从正态分布,且与MLE的关系密切,当损失函数取对数似然时,M‑估计器退化为MLE。

2025-05-08 20:51:44 1258

原创 时频特征详解

信号处理是现代信息科学的核心,而时频分析作为信号处理的重要手段,为我们提供了同时观察信号在时域和频域特征的强大工具。传统的傅里叶分析将信号分解成不同频率的正弦波,但这种方法只能反映信号的频率组成,而无法体现频率随时间的变化规律。而在实际应用中,众多信号(如语音、雷达、地震等)都是非平稳的,其频率特征随时间变化。时频分析恰好弥补了这一缺陷,使我们能够捕捉信号动态特性。在探讨具体的时频特征之前,我们需要先深入理解信号的时频表示方法。最常用的时频分析工具包括短时傅里叶变换(STFT)、小波变换、Wigner-Vi

2025-05-07 23:20:47 1111

原创 经验模态分解熵详解

经验模态分解熵(Empirical Mode Decomposition Entropy, EMDE)是一种基于经验模态分解(Empirical Mode Decomposition, EMD)技术的信息熵度量方法。它结合了非线性非平稳信号分析和信息论,为复杂系统提供了强大的分析工具。经验模态分解是由黄锷(Norden E. Huang)等人在1998年提出的一种适用于非线性非平稳时间序列分析的方法。与传统的傅里叶分析不同,EMD不依赖于预设的基函数,而是根据信号本身的特性进行自适应分解。EMD的核心思想是

2025-05-07 22:49:22 550

原创 分数阶傅立叶变换:时频平面上的旋转艺术

分数阶傅立叶变换可以被视为普通傅立叶变换的分数次幂。对于任意实数α,函数fffFαfu∫−∞∞KαuxfxdxFα​fu∫−∞∞​Kα​uxfxdx其中KαuxKα​uxKαux1−icot⁡α2πexp⁡icot⁡α2u2x2−icsc⁡α⋅ux当α≠nπδu−x当α2nπδux当α2n±1π。

2025-05-06 16:04:18 776

原创 AI生成内容检测方法

AI生成文本往往存在某些统计上的规律性,这些规律可能与人类自然书写的模式有所不同,统计特征分析法就是基于这一原理进行检测的。最基本的统计特征包括词频分布、句长变化、词汇多样性等指标。例如,我们可以使用Zipf定律来分析文本中词频的分布情况。fr∝rα1​其中fr是排名为r的词的频率,α接近于1。研究表明,AI生成的文本中,高频词和低频词的分布可能与这一规律存在细微偏差。

2025-05-06 15:26:55 1155

原创 熵测度详解

熵是信息论、热力学和统计力学中的核心概念,用于衡量系统的无序程度或不确定性。

2025-05-05 00:40:24 752

原创 t-SNE: 基于信号分离的降维技术详解

t-SNE(t-distributed Stochastic Neighbor Embedding)是一种广泛应用于高维数据可视化的非线性降维技术,由Laurens van der Maaten和Geoffrey Hinton于2008年提出。与传统的降维方法相比,t-SNE特别擅长保留数据的局部结构,使得降维后的数据在低维空间中能够更好地展现高维数据的聚类特性。

2025-05-05 00:18:15 849

原创 算术编码详解

算术编码是一种高效的无损数据压缩技术,它通过将输入序列映射到实数区间内的单个数值来实现压缩。与传统的熵编码方法(如霍夫曼编码)相比,算术编码能够更接近理论极限——熵,特别是在处理概率分布不均匀的数据时表现优异。算术编码的核心思想是将整个输入序列编码为一个区间内的单个实数。随着编码过程的推进,这个区间会不断缩小,最终表示原序列的实数所需的位数将接近序列的熵极限。具体来说,算术编码将整个符号序列视为一个实数,这个实数落在[0,1)区间内。编码过程中,算法根据每个符号的概率,不断细分这个区间。高概率的符号获得更大

2025-05-04 22:37:16 779

原创 子带编码详解

子带编码是一种重要的信号处理与压缩技术,通过将信号分解到不同频带上进行处理,实现高效的表示和压缩。子带编码的核心思想是将信号分解为多个频带(子带),然后对每个子带分别进行处理。这种方法的优势在于可以根据不同子带的特性采用不同的量化和编码策略,从而提高整体的编码效率。假设输入信号为 x[n]x[n]x[n],子带编码首先通过滤波器组将其分解为 MMM 个子带信号 x0[n],x1[n],...,xM−1[n]x_0[n], x_1[n], ..., x_{M-1}[n]x0​[n],x1​[n],...,xM

2025-05-04 22:27:22 527

原创 变换编码详解

变换编码是数据压缩领域中的一种重要技术,它通过将信号从一个域转换到另一个域来实现高效的表示和压缩。

2025-05-04 22:10:33 657

原创 差分脉冲编码调制(DPCM)详解

在数字信号处理和数据压缩领域中,差分脉冲编码调制(Differential Pulse Code Modulation,简称DPCM)是一种重要的信号编码技术。它通过对信号的差分值而非原始值进行编码,有效地减少了数据传输和存储所需的比特量,同时保持了较高的信号保真度。DPCM的核心思想建立在一个简单而强大的观察之上:在大多数自然信号(如语音、图像等)中,相邻采样点之间通常存在较强的相关性。这意味着当前采样点的值可以通过前一采样点或多个前置采样点的值进行预测。如果我们仅传输或存储预测值与实际值之间的差异(称为

2025-05-02 19:38:51 907

原创 自适应量化方法详解

自适应量化是数字信号处理和机器学习领域的重要技术,它通过动态调整量化参数来适应数据的统计特性,提高数据表示的精度和效率。

2025-05-02 19:17:08 942

原创 标量量化与矢量量化详解

标量量化是仅考虑一个采样点的量化问题,将一个连续幅度值转变成离散幅度值xQxxQx。简单来说,标量量化就是对信号样本逐个进行量化,每次只处理一个数值。这是最基本的量化形式,也是最常见的量化方法。矢量量化(Vector Quantization,VQ)是20世纪70年代后期发展起来的一种有效的有损压缩技术,其理论基础是香农的速率失真理论。与标量量化不同,矢量量化是将若干个样本点组成一个矢量,然后对该矢量整体进行量化。矢量量化可以看作是标量量化的高维扩展。

2025-05-01 09:07:55 1254

原创 低秩矩阵乘法详解

在线性代数中,矩阵的秩是描述矩阵线性依赖关系的一个基本概念。矩阵A的秩定义为A的线性无关的行或列向量的最大数量,通常表示为rank(A)。对于矩阵A ∈ ℝ^{m×n},其秩满足以下性质:0≤rank(A)≤min⁡(m,n)0 \leq \text{rank}(A) \leq \min(m, n)0≤rank(A)≤min(m,n)若rank(A) = min(m, n),则称A为满秩矩阵;若rank(A) < min(m, n),则称A为秩亏矩阵。对于任意矩阵A ∈ ℝ^{m×n}和B ∈ ℝ^{n×p

2025-04-30 19:46:09 730

原创 同步特征提取的全面详解

同步特征提取是信号处理和数据分析领域中的一项关键技术,它通过捕获和分析同步发生的数据特征,为信号识别、分类和预测提供了强大的工具。同步特征提取的核心在于揭示多信号间的内在关联性和协同动态特性,这种关联性往往包含了系统更本质的信息。同步特征提取是指从多个同时采集的信号或数据流中提取具有时间同步性的特征的过程。与传统的单一信号特征提取不同,同步特征提取关注的是多信号间的时间关联性和协同变化特性。这种方法能够捕获单一信号分析所无法获取的系统整体动态特性。从数学角度看,设在时间序列 T={t1,t2,…,tN}\m

2025-04-30 19:22:20 624

原创 李雅普诺夫指数详解

在现代科学中,我们常常遇到看似简单却表现出极其复杂行为的系统。这些系统可能对初始条件的微小变化表现出惊人的敏感性,长期行为呈现不规则性,这就是所谓的混沌现象。混沌理论为我们提供了理解和分析这类系统的工具,而李雅普诺夫指数则是其中最为核心的概念之一。李雅普诺夫指数(Lyapunov exponent)是描述动力系统中相邻轨道分离速率的重要指标,它定量刻画了系统对初始条件微小扰动的敏感程度。这一概念由俄罗斯数学家亚历山大·米哈伊洛维奇·李雅普诺夫(Aleksandr Mikhailovich Lyapunov)

2025-04-30 19:02:54 794

原创 递归定量分析(RQA)详解

递归定量分析(Recurrence Quantification Analysis, RQA)是一种用于分析非线性动力系统的强大工具,它能够量化系统中的重复模式和结构特征。这种方法最初由Zbilut和Webber于1992年提出,随后由Marwan等人进一步扩展和完善。RQA是建立在递归图(Recurrence Plot, RP)基础上的定量分析方法,通过将递归图中的各种结构特征量化,从而揭示动力系统的内在特性。递归图的理论基础可以追溯到庞加莱回复性定理。该定理指出:在一定的条件下,系统的某个状态在经过充分

2025-04-30 18:39:16 957

原创 Winograd矩阵乘法算法详解

矩阵乘法是计算机科学和数学领域中的基础运算,广泛应用于图形学、机器学习、数值分析等诸多领域。传统的矩阵乘法算法时间复杂度为O(n³),而Winograd算法是一种优化矩阵乘法的重要算法,它通过减少乘法运算的数量来提高计算效率。

2025-04-28 15:46:49 1134

原创 Strassen矩阵乘法算法详解

矩阵乘法是线性代数中的基本操作,也是许多计算机科学应用的核心。传统的矩阵乘法算法的时间复杂度为O(n³),而在1969年,德国数学家沃尔克·施特拉森(Volker Strassen)提出了一种创新算法,将时间复杂度降低到约O(n^2.81)。这一突破性成果证明了矩阵乘法不必遵循传统的O(n³)限制。

2025-04-28 15:42:45 832

基于EEP-TPU的嵌入式人工智能实验手册

内容概要:本文档提供了一份详细的嵌入式人工智能实验指南,涵盖了深度学习基础、EEP-TPU张量处理器架构与开发流程。文中不仅介绍了卷积神经网络、VGG-Net、ResNet等前沿算法,还详细讲解了基于Caffe框架的深度学习分类算法实验和人脸检测实验的具体实施步骤,包括环境搭建、数据读取、网络训练、算法编译、嵌入式应用开发等各个环节。 适用人群:适用于希望深入了解嵌入式人工智能技术的研究人员、开发者和工程师,尤其是那些对深度学习和嵌入式开发有一定基础的技术人员。 使用场景及目标:本指南适合用于学术研究、产品研发和技术培训等多个场景。通过跟随文档逐步操作,可以掌握嵌入式平台上的AI应用开发全流程,能够更好地应用于智能监控、机器人视觉等领域。 其他说明:文档中包含大量实用的代码片段和技术细节,便于读者实践。同时,针对不同难度的实验提供了丰富的参考资料,确保读者可以顺利完成学习目标。

2024-10-30

伯克利博士论文:面向硬件的高效深度学习模型优化与量化研究

内容概要:本文探讨了如何在有限的计算资源下提高神经网络模型(NN)的效率。主要研究方法包括混合精度量化、Hessian分析、整数优化以及基于学习的技术如延迟和精度模拟器和块状知识蒸馏等,实现了高效的模型压缩和部署。具体成果包括通过混合精度量化实现了高达10倍的压缩比和仅1%的精度损失,提出了4位/8位混合精度模型,在Pascal VOC上达到67.1 AP50,且模型大小仅为2.9MB。 适合人群:对硬件加速和深度学习模型优化感兴趣的研究生、研究人员以及工程开发人员。 使用场景及目标:适用于需要在边缘设备、自动驾驶汽车等资源受限环境中实现实时推理和低功耗的深度学习应用场景。目的是减少内存占用、降低延时、提高能源效率同时保持高精度模型性能。 其他说明:本文详细介绍了多种硬件感知的优化技术及其实际应用案例,对于深入理解高效深度学习系统的构建有重要指导意义。

2024-10-30

基于arduino的超声测距仿真文件

基于arduino的超声测距仿真文件

2024-10-30

HC-SR04超声波模块基于arduino

HC-SR04超声波模块实例基于arduino

2024-10-30

压缩感知中的线性测量与重构算法研究

该文件是David L. Donoho在《IEEE信息论学报》上发表的一篇关于压缩感知的详细学术论文。摘要讨论了压缩感知的概念,即使用比未知向量x的维度更少的测量值来测量和重建x。当x可以通过已知变换的变换编码进行压缩时,这是可行的,从而可以大大减少所需的测量次数。论文进一步阐述了实现压缩传感的数学框架和算法,强调了某些基础(如傅里叶或小波)中信号的稀疏性,以及某些测量如何能够实现精确的重建。它解释了如何使用线性规划从测量中求解最重要的系数,这在信号处理中被称为“基础追求”方法。该论文还讨论了与压缩传感有效性相关的几个理论概念,例如Gelfand n-widths、最优恢复、基于信息的复杂性,并介绍了“非自适应测量”等术语,这些术语类似于基/帧元素的随机线性组合。 主要亮点包括: 对压缩传感的属性和边界进行了详细的理论分析。 讨论了最优恢复和基于信息的复杂性,深入探讨了压缩感知的数学基础。 介绍了实际算法,如通过压缩测量重建信号的基追算法。 探讨了压缩感知在各个领域的潜在应用,因为它在数据采集和重建方面非常高效。 总的来说,该文件从理论和实践的角度全面考察了压缩感知,强调了其在

2024-10-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除