一开始想着把插入排序和归并排序产生的所有序列都保存下来,然后将给定的序列与其进行比较,找到相同的中间序列,然后输出下一个序列,但是提交一直错误,也不知道哪里有问题。
看了其他人的做法,只能换了一种直接进行判断的方法。插入排序的特点是前面是有序的,后面的序列和原序列保持不变,而归并排序会改变所有位置的序列,所以可以先根据插入排序的特点进行判断,找到非有序序列的第一个位置,然后与原序列进行比较,如果剩下的序列都是一样的,那就是插入排序,否则就是归并排序。
如果是归并排序,首先要找出小序列的长度,然后再进行下一步的排序。
#include <bits/stdc++.h>
using namespace std;
int n, ori[100], res[100];
int judge(int m)//判断归并序列是否符合m个m个都是有序的
{
for (int i = 0; i < n; i += m)
{
for (int j = i; j < i + m - 1 && j < n - 1; j++)
{
if (res[j] > res[j + 1])
return 0;
}
}
return 1;
}
int main()
{
cin >> n;
for (int i = 0; i < n; i++)
cin >> ori[i];
for (int i = 0; i < n; i++)
cin >> res[i];
int pos1, pos2;
for (int i = 1; i < n; i++)//找到第一个非有序的位置
{
if (res[i] < res[i - 1])
{
pos2 = pos1 = i;
break;
}
}
while (pos2 < n && res[pos2] == ori[pos2])//比较剩下序列是否相同
pos2++;
if (pos2 == n)
{
printf("Insertion Sort\n");
sort(res, res + pos1 + 1);
for (int i = 0; i < n - 1; i++)
printf("%d ", res[i]);
printf("%d", res[n - 1]);
}
else
{
int m, i;
printf("Merge Sort\n");
for (i = 2;; i *= 2)//找到最大的归并序列
{
if (!judge(i))
{
m = i;
break;
}
}
for (i = 0; i < n - m; i += m)
{
sort(res + i, res + i + m);
}
sort(res + i, res + n);
for (int i = 0; i < n - 1; i++)
printf("%d ", res[i]);
printf("%d", res[n - 1]);
}
return 0;
}
下面是保存所有序列并进行比较的代码,但是没有通过
#include <bits/stdc++.h>
//将插入和归并排序的所有中间序列记录下来,然后进行查找
#define mem(a) memset(a, 0, sizeof(a))
using namespace std;
int tmp[101], ori[101], mid[101], ins[100][101], meg[10][101];
int n, cnts = 0, cntm = 0;
int youxu()
{
for (int i = 2; i <= n; i++)
{
if (ori[i] < ori[i - 1])
return 0;
}
return 1;
}
int cmp(int a[], int b[]) //比较是否相同
{
for (int i = 1; i <= n; i++)
{
if (a[i] != b[i])
return 0;
}
return 1;
}
void printarr(int a[])
{
for (int i = 1; i < n; i++)
{
printf("%d ", a[i]);
}
printf("%d\n", a[n]);
}
int main()
{
cin >> n;
for (int i = 1; i <= n; i++)
{
cin >> ori[i];
tmp[i] = ori[i];
}
for (int i = 1; i <= n; i++)
{
cin >> mid[i];
}
for (int k = 0;; k++) //产生插入排序的序列
{
if (youxu())
break;
int pos = 0;
for (int i = 2; i <= n; i++)
{
if (ori[i] < ori[i - 1])
{
pos = i;
break;
}
}
if (!pos)
break;
cnts++;
ori[0] = ori[pos]; //临时保存pos位置的数字
while (ori[pos - 1] > ori[0] && pos>1)
{
ori[pos] = ori[pos - 1];
pos--;
}
ori[pos] = ori[0];
for (int i = 1; i <= n; i++)
ins[k][i] = ori[i];
}
for (int i = 1; i <= n; i++)
ori[i] = tmp[i]; //还原ori
for (int k = 0;; k++) //产生归并排序的序列
{
int m = pow(2, k + 1);
if (youxu())
break;
cntm++;
for (int i = 1; i <= n; i += m)
{
int e = i + m;
if (i + m > n + 1)
e = n + 1;
sort(ori + i, ori + e);
}
for (int i = 1; i <= n; i++)
{
meg[k][i] = ori[i];
}
}
int flag = 0;
for (int i = 0; i < cntm; i++)
{
if (cmp(meg[i], mid))
{
flag = 1;
cout<<"Merge Sort"<<endl;
//printf("Merge Sort\n");
printarr(meg[i + 1]);
break;
}
}
if (!flag)
{
for (int i = 0; i < cnts; i++)
{
if (cmp(ins[i], mid))
{
printf("Insertion Sort\n");
printarr(ins[i + 1]);
break;
}
}
}
return 0;
}