什么是有效的结论?
若前提为k个命题公式: A 1 , A 2 , A 3 , . . . , A k A_1,A_2,A_3,...,A_k A1,A2,A3,...,Ak,结论为命题公式 B B B,对命题公式赋值时,前提和结论的取值情况有以下4种:
- A 1 ∧ A 2 ∧ . . . ∧ A k A_1\land A_2\land ...\land A_k A1∧A2∧...∧Ak为0, B B B为0
- A 1 ∧ A 2 ∧ . . . ∧ A k A_1\land A_2\land ...\land A_k A1∧A2∧...∧Ak为0, B B B为1
- A 1 ∧ A 2 ∧ . . . ∧ A k A_1\land A_2\land ...\land A_k A1∧A2∧...∧Ak为1, B B B为0
- A 1 ∧ A 2 ∧ . . . ∧ A k A_1\land A_2\land ...\land A_k A1∧A2∧...∧Ak为1, B B B为1
根据定义,只要不出现第3种情况,推理就是正确的,结论就是有效的。
即推理正确当且仅当
A
1
∧
A
2
∧
.
.
.
∧
A
k
→
B
是
重
言
式
A_1\land A_2\land ...\land A_k\rightarrow B是重言式
A1∧A2∧...∧Ak→B是重言式,记为:
A
1
∧
A
2
∧
.
.
.
∧
A
k
⇒
B
A_1\land A_2\land ...\land A_k\Rightarrow B
A1∧A2∧...∧Ak⇒B.
注意:推理正确并不能保证结论一定成立,因为前提可能就不成立。
与用 A ⇔ B A \Leftrightarrow B A⇔B表示 A ↔ B A\leftrightarrow B A↔B是重言式类似,用 A ⇒ B A \Rightarrow B A⇒B表示 A → B A\rightarrow B A→B是重言式。
‘ ⇔ ’ ‘\Leftrightarrow’ ‘⇔’和 ‘ ⇒ ’ ‘\Rightarrow’ ‘⇒’不是逻辑联结词,只是用来表示某种重言式的一种方法。
如何判断推理是否正确?
若 A → B A\rightarrow B A→B推理正确,即 A → B A\rightarrow B A→B重言,则公式可写为: A ⇒ B A\Rightarrow B A⇒B.
判断推理是否正确有两种方法
- 证明该蕴含式是否为重言式
- 构造证明法
判断前提与结论所组成的蕴涵式是否为重言式
即证明 A → B ⇔ 1 A\rightarrow B\Leftrightarrow 1 A→B⇔1
等值演算法只能用来证明蕴涵式是重言式,对于不正确的推理,应先等值演算到一定步骤,将推理的形式结构化简,使其容易观察出成假赋值,举出成假赋值 即可说明不重言,推理错误。或者也可接着等值演算化简后的式子,求出其主析取范式,据此判断其不重言。
构造证明
当前提和结论都是比较复杂的命题公式或者所包含的命题变元很多时,构造证明是更有效的推理方法。
推理的形式结构中
A
1
,
A
2
,
.
.
.
,
A
k
A_1, A_2, ..., A_k
A1,A2,...,Ak为前提, 结论为
B
B
B, 若能用以上推理规则, 构造出证明序列, 序列的最后公式为
B
B
B, 则说明此推理正确,
B
B
B是
A
1
,
A
2
,
.
.
.
,
A
k
A_1, A_2, ..., A_k
A1,A2,...,Ak的逻辑结论.
构造证明的格式:
前提:
结论:
证明:
①… (前提引入)
② (…)
③ (…)
如果要证明的结论为蕴涵式形式,则考虑使用附加前提法。
附加前提法的优点在于:增加了一个条件(附加前提引入),简化了证明目标
如果要证明的结论为单个文字或为析取式形式,则考虑使用归谬法。
归谬法的优点也是增加了条件(否定结论引入)(尤其是在结论为析取式的情况下),改变了证明思路。
常用置换:
-
p → ( q → r ) ⇔ q → ( p → r ) p\rightarrow (q\rightarrow r) \Leftrightarrow q\rightarrow (p\rightarrow r) p→(q→r)⇔q→(p→r)
-
p ↔ q p\leftrightarrow q p↔q (前提引入)
( p → q ) ∧ ( q → p ) (p\rightarrow q)\land(q\rightarrow p) (p→q)∧(q→p) (置换)
p → q p\rightarrow q p→q (化简) -
p → q ⇔ ¬ q → ¬ p p\rightarrow q \Leftrightarrow \neg q \rightarrow \neg p p→q⇔¬q→¬p
-
p ∨ q ⇔ ¬ p → q p\vee q \Leftrightarrow \neg p\rightarrow q p∨q⇔¬p→q