离散数学11:图的着色

这篇博客探讨了图论中的着色问题,包括点着色、面着色和边着色。它阐述了无环图的着色性质,如χ(G)≤Δ(G)+1,并介绍了四色定理和Vizing定理。内容还涵盖了二部图、完全图的边色数以及特定图的染色策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点着色

点着色处理的是无环图。(再次强调:图论中“环”指自环。)
在这里插入图片描述
一些性质
在这里插入图片描述
对 于 任 意 的 无 环 图 G 均 有 : χ ( G ) ≤ Δ ( G ) + 1 对于任意的无环图G均有:\chi(G)\le \Delta(G) + 1 Gχ(G)Δ(G)+1

若 无 环 图 G 连 通 且 不 是 完 全 图 也 不 是 奇 圈 , 则 : χ ( G ) ≤ Δ ( G ) 若无环图G连通且不是完全图也不是奇圈,则:\chi(G)\le\Delta(G) Gχ(G)Δ(G)

面着色

面着色处理的是无桥连通图

在这里插入图片描述

四色定理:任何平面图都是4-可着色的

边着色

在这里插入图片描述
Vizing定理 设 G 是 简 单 图 , 则 Δ ( G ) ≤ χ ′ ( G ) ≤ Δ ( G ) + 1 设G是简单图,则\Delta(G)\le\chi'(G)\le\Delta(G)+1 GΔ(G)χ(G)Δ(G)+1
即: χ ′ ( G ) = Δ ( G ) 或 Δ ( G ) + 1 \chi'(G) = \Delta(G)或\Delta(G)+1 χ(G)=Δ(G)Δ(G)+1

可以先从 Δ ( G ) \Delta(G) Δ(G)开始尝试,若找不出这种染色方法,就说明 χ ′ ( G ) = Δ ( G ) + 1 \chi'(G) = \Delta(G)+1 χ(G)=Δ(G)+1

其它结论

  • 二 部 图 的 边 色 数 为 4 二部图的边色数为4 4
  • 长 度 ≥ 2 的 偶 圈 的 边 色 数 为 2 , 长 度 ≥ 3 的 奇 圈 的 边 色 数 为 3 长度\ge2的偶圈的边色数为2,长度\ge3的奇圈的边色数为3 2233
  • 若 G 为 n 阶 ( n ≥ 2 ) 完 全 图 , 若 n 为 奇 数 , χ ′ ( K n ) = n ; 若 n 为 偶 数 , χ ′ ( K n ) = n − 1 若G为n阶(n\ge2)完全图,若n为奇数,\chi'(K_n) = n;\\若n为偶数,\chi'(K_n) = n-1 Gn(n2)nχ(Kn)=n;nχ(Kn)=n1.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值