点着色
点着色处理的是无环图。(再次强调:图论中“环”指自环。)
一些性质:
对
于
任
意
的
无
环
图
G
均
有
:
χ
(
G
)
≤
Δ
(
G
)
+
1
对于任意的无环图G均有:\chi(G)\le \Delta(G) + 1
对于任意的无环图G均有:χ(G)≤Δ(G)+1
若 无 环 图 G 连 通 且 不 是 完 全 图 也 不 是 奇 圈 , 则 : χ ( G ) ≤ Δ ( G ) 若无环图G连通且不是完全图也不是奇圈,则:\chi(G)\le\Delta(G) 若无环图G连通且不是完全图也不是奇圈,则:χ(G)≤Δ(G)
面着色
面着色处理的是无桥连通图。
四色定理:任何平面图都是4-可着色的。
边着色
Vizing定理:
设
G
是
简
单
图
,
则
Δ
(
G
)
≤
χ
′
(
G
)
≤
Δ
(
G
)
+
1
设G是简单图,则\Delta(G)\le\chi'(G)\le\Delta(G)+1
设G是简单图,则Δ(G)≤χ′(G)≤Δ(G)+1
即:
χ
′
(
G
)
=
Δ
(
G
)
或
Δ
(
G
)
+
1
\chi'(G) = \Delta(G)或\Delta(G)+1
χ′(G)=Δ(G)或Δ(G)+1
可以先从 Δ ( G ) \Delta(G) Δ(G)开始尝试,若找不出这种染色方法,就说明 χ ′ ( G ) = Δ ( G ) + 1 \chi'(G) = \Delta(G)+1 χ′(G)=Δ(G)+1。
其它结论:
- 二 部 图 的 边 色 数 为 4 二部图的边色数为4 二部图的边色数为4
- 长 度 ≥ 2 的 偶 圈 的 边 色 数 为 2 , 长 度 ≥ 3 的 奇 圈 的 边 色 数 为 3 长度\ge2的偶圈的边色数为2,长度\ge3的奇圈的边色数为3 长度≥2的偶圈的边色数为2,长度≥3的奇圈的边色数为3
- 若 G 为 n 阶 ( n ≥ 2 ) 完 全 图 , 若 n 为 奇 数 , χ ′ ( K n ) = n ; 若 n 为 偶 数 , χ ′ ( K n ) = n − 1 若G为n阶(n\ge2)完全图,若n为奇数,\chi'(K_n) = n;\\若n为偶数,\chi'(K_n) = n-1 若G为n阶(n≥2)完全图,若n为奇数,χ′(Kn)=n;若n为偶数,χ′(Kn)=n−1.