当给出一些点和对应点处的函数值时,我们可以进行拉格朗日插值或牛顿插值。
但通常已知的条件不只局限于函数值,还有可能知道导数值,如何利用 x i , f ( x i ) , f ( k ) ( x i ) x_i,f(x_i),f^{(k)}(x_i) xi,f(xi),f(k)(xi)这些信息对原函数进行插值近似?—— 埃尔米特插值。
埃尔米特插值是应用范围更加广的插值方法。
本质上,埃尔米特插值就是一种待定系数法。
文章目录
-
-
- 泰勒插值多项式
- 已知 y 0 , y 1 , y 2 y_0,y_1,y_2 y0,y1,y2 和 y 1 ′ y_1' y1′ (3函数值1导数值)
- 已知 y 0 , y 1 y_0,y_1 y0,y1和 y 0 ′ , y 1 ′ y_0',y_1' y0′,y1′ (2函数值2导数值)
- 已知 y 0 , y 0 ′ , y 0 ′ ′ y_0,y_0',y_0'' y0,y0′,y0′′和 y 1 y_1 y1
- 已知 y 0 , y 0 ′ , y 1 , y 1 ′ , y 2 y_0,y_0',y_1,y_1',y_2 y0,y0′,y1,y1′,y2
-
泰勒插值多项式
最特殊的情况莫过于:已知一个点 x 0 x_0 x0
埃尔米特插值是一种更广泛的插值方法,尤其适用于已知函数值和导数值的情况。它通过待定系数法构建插值多项式,例如在已知3个函数值和1个导数值,或者2个函数值和2个导数值时,可以构造相应的埃尔米特插值多项式。余项分析显示,插值多项式的次数通常比给定条件少一次,且余项与最高阶导数有关。
订阅专栏 解锁全文
2万+

被折叠的 条评论
为什么被折叠?



