91. 解码方法
难度 中等
一条包含字母 A-Z
的消息通过以下映射进行了 编码 :
'A' -> "1"
'B' -> "2"
...
'Z' -> "26"
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,"11106"
可以映射为:
"AAJF"
,将消息分组为(1 1 10 6)
"KJF"
,将消息分组为(11 10 6)
注意,消息不能分组为 (1 11 06)
,因为 "06"
不能映射为 "F"
,这是由于 "6"
和 "06"
在映射中并不等价。
给你一个只含数字的 非空 字符串 s
,请计算并返回 解码 方法的 总数 。
题目数据保证答案肯定是一个 32 位 的整数。
示例 1:
输入:s = "12"
输出:2
解释:它可以解码为 "AB"(1 2)或者 "L"(12)。
示例 2:
输入:s = "226"
输出:3
解释:它可以解码为 "BZ" (2 26), "VF" (22 6), 或者 "BBF" (2 2 6) 。
示例 3:
输入:s = "0"
输出:0
解释:没有字符映射到以 0 开头的数字。
含有 0 的有效映射是 'J' -> "10" 和 'T'-> "20" 。
由于没有字符,因此没有有效的方法对此进行解码,因为所有数字都需要映射。
提示:
1 <= s.length <= 100
s
只包含数字,并且可能包含前导零。
题解
这道题是让我们把对应数字字符串转换为字母字符串,但是由于数字可以组合成两位数,那么组合而成的字符串就可能有多种。刚开始解题的时候想着这应该是枚举的问题,但是写完回溯方法时,发现超时了,那这题怎么解。
于是去看了官方题解,官方使用了动态规划,这个确实颠覆了我的想象,为什么能用动态,是怎么进行转态转移的。
从官方题解给出的解答看,给出了状态转移方程包含两种状态,一种是使用了一种字符,另一种是使用了两种字符。这和爬楼梯一样,当只有爬一阶和两阶时,那爬楼梯的可能就变成f(n - 2)和f(n - 1)。这里也是一样的道理,只有两种状态,那么状态就变成了f(n - 2)和f(n - 1)。
不过爬楼梯没有限制,数字组合有限制,如果前一个数字为0,这解码对应不了字母,直接跳过;如果是两个数字时,第一位不能是0,并且两位组合成的数要小于26。
class Solution {
public int numDecodings(String s) {
int n = s.length();//字符串长度
int[] f = new int[n + 1];//辅助数组
f[0] = 1;//初始化状态,第一位为1,如果为0,后面多少次都是0
for(int i = 1; i <= n; i++){
if(s.charAt(i - 1) != '0'){//前一位数不为0
f[i] += f[i - 1];
}
if(i > 1 && s.charAt(i - 2) != '0' && ((s.charAt(i - 2) - '0') * 10 + (s.charAt(i - 1) - '0') <= 26)){//第一位不能是0,并且两位组合成的数要小于26。
f[i] += f[i - 2];
}
}
return f[n];
}
}