最长公共子序列,是求两个子序列中最长的不连续字符串,可以采用动态规划的方法求解。
假设字符串X=“aebfd” Y=“abefkd” ,求X和Y的最长公共子序列
步骤如下:
一、先构造一个二维数组c[X.lengh+1][Y.lenth+1],记录公共子序列长度
# | a | b | e | f | k | d | |
# | |||||||
a | |||||||
e | |||||||
b | |||||||
f | |||||||
d |
二、填充第一行和第一列均为0;
第一轮:X中的a和Y对比,得出 0 1 1 1 1 1 1
第二轮:X中的ae和Y对比,得出 0 1 1 2 2 2 2
以此类推,直到第二轮:X中的aebfd和Y对比
三、在对比过程中,可以发现一个规律:例如c[i][j]
如果一样,则等于左上角+1,即c[i][j]=c[i-1][j-1]+1
↓
如果正上方的数>左边的数,则等于正上方的数,即c[i][j]=c[i-1][j]
↓
其他,则等于左边,即c[i][j]=c[i][j-1]
↓
返回最长公共子序列的长度c[X.lengh+1][Y.lengh+1]
# | a | b | e | f | k | d | |
# | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
a | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
e | 0 | 1 | 1 | 2 | 2 | 2 | 2 |
b | 0 | 1 | 2 | 2 | 2 | 2 | 2 |
f | 0 | 1 | 2 | 2 | 3 | 3 | 3 |
d | 0 | 1 | 2 | 2 | 3 | 3 | 4 |
四、再新建一个二维数组b,用于记录c[i][j]是由上面的哪一种情况得到的,这里约定
若c[i][j]=c[i-1][j-1]+1,则b[i][j]=1
若c[i][j]=c[i-1][j],则b[i][j]=2
若c[i][j]=c[i][j-1],则b[i][j]=3
前四步的代码参考:
public static int lcsLength(char[] x,char[] y,int[][] b ){
int m=x.length;
int n=y.length;
int [][] c=new int[m+1][n+1];
for(int i=1;i<=m;i++)c[i][0]=0;
for(int i=1;i<=n;i++)c[0][i]=0;
for(int i=1;i<=m;i++)
for(int j=1;j<=n;j++){
if(x[i-1]==y[j-1]){
c[i][j] = c[i-1][j-1] + 1;
b[i][j] = 1;
}
else if(c[i-1][j]>=c[i][j-1]){
c[i][j]=c[i-1][j];
b[i][j]=2;
}
else{
c[i][j]=c[i][j-1];
b[i][j]=3;
}
}
return c[m][n];
}
五、从b[m][n]开始,构造最长公共子序列
public void lcs(int i,int j,char []x,int [][]b){
if(i==0||j==0)return;
if(b[i][j]==1){
lcs(i-1,j-1,x,b);
System.out.print(x[i-1]);
}
else if(b[i][j]==2)lcs(i-1,j,x,b);
else lcs(i,j-1,x,b);
}
六、例子的主函数部分
public static void main(String args[]){
char[] X={'a','e','b','f','d'};
char[] Y={'a','b','e','f','k','d'};
LongestCommonSubsequence LCS=new LongestCommonSubsequence();
LCS.lcsLength(X, Y, b);
LCS.lcs(X.length, Y.length,X,b);
}
七、得出结果