codeforces:1152C(math)

Euclidean Algorithm:
找lsm(a+k,b+k)等同于找gcd(a+k,b+k)
其中:
gcd(a+k,b+k) = gcd(a+k,b-a)
枚举b-a所有因子即可,通过因子找a+k,然后再找k

#include<bits/stdc++.h>
using namespace std;
#define LL long long

LL a,b;
LL minlsm,mink;

void doit(LL i){
    // 找到 大于 a 且是 i 的最小倍数,即 a+k
    LL aa = ( a + i - 1) / i * i;
    // 找到 大于 b 而且 i 的最小倍数,即 b+k
    LL bb = ( b + i - 1) / i * i;
    /*
    这里要说明,根据Euclidean Algorithm,
    gcd( a+k , b+k ) = gcd( a+k , b-a )
    此时 aa = a + k , bb = b + k 的k一定是同一个k
    */
    // 计算最小公倍数
    LL lsm = aa * bb / i;
    // 计算k
    LL k = aa - a;
    // 更新答案
    if( lsm < minlsm || (lsm == minlsm && k < mink)){
        minlsm = lsm;
        mink = k;
    }
}

int main(){
    scanf("%I64d%I64d",&a,&b);
    if(b < a) swap(a,b);
    minlsm = a*b;
    mink = minlsm - a;
    LL c = b - a;
    if(c == 0){
        printf("0\n");
        return 0;
    }
    // gcd( a+k , b+k ) = gcd( a+k , b-a )
    // b-a 不能为0
    // 枚举 b-a 的所有因子
    for(int i=1 ; i*i <= c ; i++ ){
        if( c % i ) continue; // i 不是 c 的因子
        doit(i);
        doit(c/i);
    }
    printf("%I64d\n",mink);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值