Euclidean Algorithm:
找lsm(a+k,b+k)等同于找gcd(a+k,b+k)
其中:
gcd(a+k,b+k) = gcd(a+k,b-a)
枚举b-a所有因子即可,通过因子找a+k,然后再找k
#include<bits/stdc++.h>
using namespace std;
#define LL long long
LL a,b;
LL minlsm,mink;
void doit(LL i){
// 找到 大于 a 且是 i 的最小倍数,即 a+k
LL aa = ( a + i - 1) / i * i;
// 找到 大于 b 而且 i 的最小倍数,即 b+k
LL bb = ( b + i - 1) / i * i;
/*
这里要说明,根据Euclidean Algorithm,
gcd( a+k , b+k ) = gcd( a+k , b-a )
此时 aa = a + k , bb = b + k 的k一定是同一个k
*/
// 计算最小公倍数
LL lsm = aa * bb / i;
// 计算k
LL k = aa - a;
// 更新答案
if( lsm < minlsm || (lsm == minlsm && k < mink)){
minlsm = lsm;
mink = k;
}
}
int main(){
scanf("%I64d%I64d",&a,&b);
if(b < a) swap(a,b);
minlsm = a*b;
mink = minlsm - a;
LL c = b - a;
if(c == 0){
printf("0\n");
return 0;
}
// gcd( a+k , b+k ) = gcd( a+k , b-a )
// b-a 不能为0
// 枚举 b-a 的所有因子
for(int i=1 ; i*i <= c ; i++ ){
if( c % i ) continue; // i 不是 c 的因子
doit(i);
doit(c/i);
}
printf("%I64d\n",mink);
return 0;
}