dp解法,时间复杂度O(NNM),空间复杂度O(N*M)
dp[i][j] 表示 str[i…La] 和 pattern[j…Lb] 是否通配
动态规划,从后向前推
第一,dp[La][Lb]一定为真,两个空串
第二,处理dp[i][Lb]部分,表示pattern已经结束,str没有结束,所以全部为假
第三,处理dp[La][j]部分,表示str已经结束,pattern没有结束,所以当pattern结尾都是X* 才会为真
第四,处理dp[i][Lb-1]部分,由于* 的存在,所以此部分需要特殊处理,表示pattern只剩最后一个字符,str没有结束,只有dp[La][Lb]有可能为真,其他都为假。
第五,打表dp[i][j],其中当pattern[j]==’*’,所有dp[i][j]为假,dp[i][j] 只依赖 dp[i+1][j+1] 或 dp[i+k(k>=0)][j+2]的值。
简洁代码:
class Solution {
public:
bool match(char* str, char* pattern)
{
int La = strlen(str);
int Lb = strlen(pattern);
if(La == 0 && Lb == 0) return true;
if(Lb == 0) return false;
bool dp[La+1][Lb+1];
memset(dp,0,sizeof(dp));
dp[La][Lb] = true;
for(int j = Lb -2 ; j>=0; j-=2){
if(pattern[j+1] == '*' && pattern[j] != '*'){
dp[La][j] = true;
}else{
break;
}
}
if(str[La-1] == pattern[Lb-1] || pattern[Lb-1]=='.')
dp[La-1][Lb-1] = true;
for(int i=La-1;i>=0;i--){
for(int j=Lb-2;j>=0;j--){
if(pattern[j+1] == '*'){
int k = i;
while(k<La &&
(pattern[j] == str[k] || pattern[j] == '.')){
if(dp[k][j+2]){
dp[i][j] = true;
break;
}
k++;
}
dp[i][j] = dp[i][j] || dp[k][j+2];
}else{
dp[i][j] = dp[i+1][j+1] &&
(pattern[j] == str[i] || pattern[j] == '.');
}
}
}
return dp[0][0];
}
};
带注释代码
class Solution {
public:
bool match(char* str, char* pattern)
{
int La = strlen(str);
int Lb = strlen(pattern);
if(La == 0 && Lb == 0) return true;
if(Lb == 0) return false;
//动态规划,从后向前推
bool dp[La+1][Lb+1];
memset(dp,0,sizeof(dp));
// 第一,dp[La][Lb]一定为真,两个空串
dp[La][Lb] = true;
// 第二,处理dp[i][Lb]部分;
// 表示pattern已经结束,str没有结束,所以全部为0
// 第三,处理dp[La][j]部分
// 表示str已经结束,pattern没有结束,所以当pattern结尾都是X*才会为真
for(int j = Lb -2 ; j>=0; j-=2){
if(pattern[j+1] == '*' && pattern[j] != '*'){
dp[La][j] = true;
}else{
break;
}
}
// 第四,处理dp[i][Lb-1]部分,由于*的存在,所以此部分需要特殊处理
// 表示pattern只剩最后一个字符,str没有结束
// 只有dp[La][Lb]有可能为真,其他都为假。
if(str[La-1] == pattern[Lb-1] || pattern[Lb-1]=='.')
dp[La-1][Lb-1] = true;
// 第五,打表dp[i][j],其中当pattern[j]=='*',所有dp[i][j]为假
// dp[i][j] 只依赖 dp[i+1][j+1] 和 dp[i+k(k>=0)][j+2]的值。
for(int i=La-1;i>=0;i--){
for(int j=Lb-2;j>=0;j--){
if(pattern[j+1] == '*'){
int k = i;
// 只有当 str[k] 和 pattern[j] 通配时
// dp[i][j] 才依赖 dp[k][j+2]
while(k<La &&
(pattern[j] == str[k] || pattern[j] == '.')){
if(dp[k][j+2]){
dp[i][j] = true;
break;
}
k++;
}
// 可能通配到最后
dp[i][j] = dp[i][j] || dp[k][j+2];
}else{
dp[i][j] = dp[i+1][j+1] &&
(pattern[j] == str[i] || pattern[j] == '.');
}
}
}
return dp[0][0];
}
};