No.8 - POJ1135 迪杰斯特拉 最短路 非负权

Dijkstra算法:

// ShellDawn
// POJ1135
// No.8

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#define MM(x) memset(x,0,sizeof(x)) 
using namespace std;

#define maxn 505
int n,m;
int E[maxn][maxn];
int visited[maxn];
int low[maxn];

void Dijkstra(){
    MM(visited);
    memset(low,0x3f,sizeof(low));
    low[1] = 0;
    for(int i=0;i<n;i++){
        int loc = 0;
        int key = 0x3fffffff;
        for(int j=1;j<=n;j++){
            if(visited[j] == 0 && low[j] < key){
                loc = j;
                key = low[j];
            }
        }
        visited[loc] = 1;
        for(int j=1;j<=n;j++){
            if(E[loc][j] != 0){
                low[j] = min(low[j],low[loc] + E[loc][j]);
            }
        }
    }
}

int main(){
    int T = 1;
    while(~scanf("%d%d",&n,&m)&&n!=0){
        if(T!=1) puts("");
        printf("System #%d\n",T++);
        MM(E);
        for(int i=0;i<m;i++){
            int a,b,c;
            cin>>a>>b>>c;
            E[a][b] = E[b][a] = c;
        }
        Dijkstra();
        double ans = 0;
        int loc = 1;
        for(int i=1;i<=n;i++){
            if(low[i] > ans){
                ans = low[i];
                loc = i;
            }
        }
        bool flag = true;
        int locA = 1,locB = 1;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                if(E[i][j] != 0){
                    double t = (low[i] + low[j] + E[i][j])*1.0/2;
                    if(t>ans){
                        locA = i;
                        locB = j;
                        ans = t;
                        flag = false;
                    }
                }
            }
        }
        if(flag){
            printf("The last domino falls after %.1f seconds, at key domino %d.\n",ans,loc);
        }else{
            printf("The last domino falls after %.1f seconds, between key dominoes %d and %d.\n",ans,min(locA,locB),max(locA,locB));
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值