计算机原理即概念

课堂复习+作业

1. 计算机的基本概念

  • 概念

  • 组成

    • 硬件和软件

2. 计算机的语言

  • 机器语言 --> 汇编语言 --> 高级计算机语言
    • 编译型语言 代表语言 C、C++、Delphi等
      补充:运行编译型语言是相对于解释型语言存在的,编译型语言的首先将源代码编译生成机器语言,再由机器运行机器码(二进制)。像C/C++等都是编译型语言。
      编译型语言:程序在执行之前需要一个专门的编译过程,把程序编译成 为机器语言的文件,运行时不需要重新翻译,直接使用编译的结果就行了。程序执行效率高,依赖编译器,跨平台性差些。如C、C++、Delphi等.
      而相对的,解释性语言编写的程序不进行预先编译,以文本方式存储程序代码。在发布程序时,看起来省了道编译工序。但是,在运行程序的时候,解释性语言必须先解释再运行。
    • 解释型语言 代表语言 Python/JavaScript / Perl /Shell
      补充:相对于编译型语言存在的,源代码不是直接翻译成机器语言,而是先翻译成中间代码,再由解释器对中间代码进行解释运行。比如Python/JavaScript / Perl /Shell等都是解释型语言。
      解释型语言:程序不需要编译,程序在运行时才翻译成机器语言,每执 行一次都要翻译一次。因此效率比较低。比如Basic语言,专门有一个解释器能够直接执行Basic程 序,每个语句都是执行的时候才翻译。(在运行程序的时候才翻译,专门有一个解释器去进行翻译,每个语句都是执行的时候才翻译。效率比较低,依赖解释器,跨 平台性好.)

3.交互模式

  • TUI(WIN+R) 文本用户界面
    • 例如DOS
  • GUI 图形用户界面
    • 例如我们平常看到的操作软件

4. 文本文件和字符集

  • 纯文本 即只有文字
  • 富文本 不仅仅只有文字,还包括图片、文档等
4.1
  • 编码 encode()
  • 解码 decode()
4.2 字符集
  • ASCII
  • ISO-8859-1
  • GBK
  • Unicode
    • utf- 8
    • utf- 16

5. 进制

  • 十进制–>二进制 原理: 对十进制数进行除2运算
  • 二进制 – > 十进制 原理:二进制乘以2(次幂)的过程

6. 环境变量

点击我的电脑----》 右键此电脑属性-----》 高级系统设置-----》 环境变量
作用:能够让我们全局访问设置好的程序

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值