关于lm393使用时的一些注意

电压比较器常用作矩形波的产生与波形的变换,可将一些周期性的波形转换成同频率的矩形波。下面简要讨论使用电压比较器lm393一些值得注意的地方。
1、输出需要加上拉电阻
在这里插入图片描述
图1.lm393的原理图
如图1为lm393的原理图,可见lm393的输出接口为集电极开路,所以在使用时要接上拉电阻。

2、上拉电阻的取值
在这里插入图片描述
图2.lm393的驱动电流

如图2为LM393驱动电流,拉电流在5V供电时只有50nA,所以要接上拉电阻,灌电流在6mA时其输出达到1.5V,所以上拉电阻不要接得太小。
另外,本人在实践中发现,lm393给电路带来的噪声较大,这与上拉电阻的取值有关,上拉电阻越大,噪声越小,但上拉电阻较大则驱动能力变小,所以在使用时应权衡上拉电阻的取值。
3、应使用迟滞比较器
当比较器接成最基本的接法之一,如图3,是过零比较器的两种接法。
在这里插入图片描述
图3.过零比较器的两种接法
虽然这种接法比较简单,但是对于信号接近其阈值电压时,叠加在信号上的噪声则会使比较器误操作,用示波器Autoset测量时,会看到显示早示波器上的波形不稳定,调整示波器的时基可以看到在波形边沿产生多次抖动,即“振铃”现象,为了克服这样的现象,需采用迟滞比较器。迟滞比较器是通过降低其灵敏度从而增强抗干扰能力,因此其滞后电压△U的设置应当适中。关于迟滞比较器的使用,可详见百度文库的一些资料。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值