[NOIP2003 提高组] 加分二叉树 题解

题目

洛谷题目

题目描述

设一个 n n n 个节点的二叉树 tree \text{tree} tree 的中序遍历为 ( 1 , 2 , 3 , … , n ) (1,2,3,\ldots,n) (1,2,3,,n),其中数字 1 , 2 , 3 , … , n 1,2,3,\ldots,n 1,2,3,,n 为节点编号。每个节点都有一个分数(均为正整数),记第 i i i 个节点的分数为 d i d_i di tree \text{tree} tree 及它的每个子树都有一个加分,任一棵子树 subtree \text{subtree} subtree(也包含 tree \text{tree} tree 本身)的加分计算方法如下:

subtree \text{subtree} subtree 的左子树的加分 × \times × subtree \text{subtree} subtree 的右子树的加分 + + + subtree \text{subtree} subtree 的根的分数。

若某个子树为空,规定其加分为 1 1 1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为 ( 1 , 2 , 3 , … , n ) (1,2,3,\ldots,n) (1,2,3,,n) 且加分最高的二叉树 tree \text{tree} tree。要求输出

  1. tree \text{tree} tree 的最高加分。

  2. tree \text{tree} tree 的前序遍历。

输入格式

1 1 1 1 1 1 个整数 n n n,为节点个数。

2 2 2 n n n 个用空格隔开的整数,为每个节点的分数

输出格式

1 1 1 1 1 1 个整数,为最高加分($ Ans \le 4,000,000,000$)。

2 2 2 n n n 个用空格隔开的整数,为该树的前序遍历。

样例 #1

样例输入 #1

5
5 7 1 2 10

样例输出 #1

145
3 1 2 4 5

提示

数据规模与约定

对于全部的测试点,保证 1 ≤ n < 30 1 \leq n< 30 1n<30,节点的分数是小于 100 100 100 的正整数,答案不超过 4 × 1 0 9 4 \times 10^9 4×109

题目分析

考虑到本题数据范围,用暴力枚举的方法显然会超时。
再对题目进行分析,能发现每一个点都是由其子树的得分运算得出,所以我们可以将求加分及子树的问题拆解为若干个子问题。即从小节点向大节点进行运算,有没有感觉有一点眼熟?没错,其实就是一个区间 d p dp dp1

根据题目描述,可得到以下状态转移方程式:

dp[x][y][0]=max(dp[x][y][0],a[z]+dp[x][z-1][0] ∗ * dp[z+1][y][0])

具体做法

写dp数组

int dp[100][100][4];//0代表区间最大值,1代表根节点位置,2代表左区间根节点,3代表右区间根节点

从短到长dp

for(int len=1;len<=n;len++)//长度从短到长
		for(int i=1;i+len-1<=n;i++)
		{
			int j=i+len-1;
			if(len==1) dp[i][j][0]=a[i];
			else for(int k=i;k<=j;k++)
			{
				dp[i][j][0]=f(i,j,k);
			}
		}

计算当前节点

int f(int x,int y,int z)
{
	if(dp[x][y][0]<a[z]+dp[x][z-1][0]*dp[z+1][y][0])
	{
		if(x==1&&y==n) q=z;
		dp[x][y][1]=z;
		dp[x][y][2]=dp[x][z-1][1];
		dp[x][y][3]=dp[z+1][y][1];
	}
	return max(dp[x][y][0],a[z]+dp[x][z-1][0]*dp[z+1][y][0]);
}

完整代码

#include <iostream>
#include <cstring>
using namespace std;
long long n,dp[100][100][4],a[100],b[100][3],q;
int f(int x,int y,int z)
{
	if(dp[x][y][0]<a[z]+dp[x][z-1][0]*dp[z+1][y][0])
	{
		if(x==1&&y==n) q=z;
		dp[x][y][1]=z;
		dp[x][y][2]=dp[x][z-1][1];
		dp[x][y][3]=dp[z+1][y][1];
	}
	return max(dp[x][y][0],a[z]+dp[x][z-1][0]*dp[z+1][y][0]);
}
void ot(int x,int y,int q)
{
	if(q==0) return ;
	cout<<q<<" ";
	ot(x,q-1,dp[x][y][2]);
	ot(q+1,y,dp[x][y][3]);
}
int main()
{
	memset(dp,0,sizeof(dp));
	cin>>n;
	for(int i=1;i<=n*2;i++)
		for(int j=1;j<=n*2;j++)
			dp[i][j][0]=1;
	for(int i=1;i<=n;i++)
	{
		cin>>a[i];
		dp[i][i][1]=i;
	}
	for(int len=1;len<=n;len++)
		for(int i=1;i+len-1<=n;i++)
		{
			int j=i+len-1;
			if(len==1) dp[i][j][0]=a[i];
			else for(int k=i;k<=j;k++)
			{
				dp[i][j][0]=f(i,j,k);
			}
		}
	cout<<dp[1][n][0]<<endl;
	ot(1,n,q);
	return 0;
}

  1. 就是在已经求解的子问题不受后续阶段的影响的前提下,把原问题视作若干个重叠的子问题的逐层递进,每个子问题的求解过程都会构成一个“阶段”,在完成一个阶段后,才会执行下一个阶段的算法。 ↩︎

  • 30
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值