使用qteasy自定义并回测经典网格交易策略
使用qteasy自定义并回测经典网格交易策略
我们今天使用qteasy
来回测一个双均线择时交易策略,qteasy
是一个功能全面且易用的量化交易策略框架,Github地址在这里。使用它,能轻松地获取历史数据,创建交易策略并完成回测和优化,还能实盘运行。项目文档在这里。
为了继续本章的内容,您需要安装qteasy【教程1】,并下载历史数据到本地【教程2、),详情可以参考更多教程【教程3】。
建议您先按照前面教程的内容了解qteasy
的使用方法,然后再参考这里的例子创建自己的交易策略。
策略思想
本策略是一个经典的网格交易策略
策略的运行标的是000651.SZ格力电器,策略第一次运行时,买入1000股并持有,同时设定当前买入价格(四舍五入到0.1元)为基准网格,
并根据网格尺寸计算出卖出网格和买入网格, 接下来每隔5分钟运行一次,当股票价格触及买入网格或卖出网格时,产生交易信号,并刷新网格:
例如:
- 假设当前基准网格为30元,网格尺寸为0.5元,卖出网格为30.5元,买入网格为29.5元
- 当价格触及卖出网格30.5元时,产生卖出信号,卖出200股并更新基准网格为30.5元,同时计算出新的卖出网格31元和买入网格30元
交易回测的标的是:000651.SZ格力电器,
交易回测区间是:2023年1月1日至2023年3月1日
注,由于策略网格参数在每次交易以后都会被刷新,因此该策略只能以stepwise
方式进行回测,为了方便生成交易信号,该策略使用了VS
信号类型
策略实现
import qteasy as qt
import pandas as pd
import numpy as np
class GridTrade(qt.RuleIterator):
def realize(self, h, r=None, t=None, pars=None):
# 读取当前保存的策略参数,首次运行时base_grid参数为0,此时买入1000股并设置当前价格为基准网格
grid_size, trade_batch, base_grid = self.pars
# 读取最新价格
price = h[-1, 0] # 最近一个K线周期的close价格
# 计算当前价格与当前网格的偏离程度,判断是否产生交易信号
if base_grid <= 0.01:
# 基准网格尚未设置,此时为首次运行,首次买入1000股并设置基准网格为当前价格(精确到0.1元)
result = 1510
base_grid = np.round(price / 0.1) * 0.1
elif price - base_grid > grid_size:
# 触及卖出网格线,产生卖出信号
result = - trade_batch # 交易信号等于交易数量,必须使用VS信号类型
# 重新计算基准网格
base_grid += grid_size
elif base_grid - price > grid_size:
# 触及买入网格线,产生买入信号
result = trade_batch + 10
# 重新计算基准网格
base_grid -= grid_size
else:
result = 0
# 使用新的基准网格更新交易参数
self.pars = grid_size, trade_batch, base_grid
return result
策略回测
我们使用下面的参数来回测交易策略:
- 网格宽度为0.5元
- 买入/卖出批量为200股
- 交易标的为000651-格力电器
- 回测开始日期为23年1月1日,结束日期为23年3月1日
alpha = GridTrade(pars=(0.5, 200, 0.0), # 当基准网格为0时,代表首次运行,此时买入1000股,并设置当前价为基准网格
par_count=3,
par_types=['float', 'int', 'float'],
par_range=[(0.2, 2), (100, 300), (0, 40)],
name='GridTrade',
description='网格交易策略,当前股票价格波动幅度超过网格尺寸时,产生卖出或买入交易信号,并更新网格',
strategy_run_timing='close',
strategy_run_freq='5min',
data_freq='5min',
window_length=20,
)
op = qt.Operator(alpha, signal_type='VS') # 交易信号等于交易数量,必须使用VS信号类型
op.op_type = 'stepwise' # 需要动态更新策略参数,必须使用'stepwise'交易类型
op.set_parameter(0, (0.5, 200, 0.0))
op.run(mode=1,
asset_type='E',
asset_pool='000651.SZ',
benchmark_asset='000651.SZ',
benchmark_asset_type='E',
benchmark_dtype='close',
trade_batch_size=100,
sell_batch_size=1,
trade_log=True,
invest_start='20230101',
invest_end='20230301',
backtest_price_adj='none',
)
print()
回测的结果如下:
====================================
| |
| BACK TESTING RESULT |
| |
====================================
qteasy running mode: 1 - History back testing
time consumption for operate signal creation: 0.0 ms
time consumption for operation back looping: 839.9 ms
investment starts on 2023-01-03 09:30:00
ends on 2023-02-28 15:00:00
Total looped periods: 0.2 years.
-------------operation summary:------------
Only non-empty shares are displayed, call
"loop_result["oper_count"]" for complete operation summary
Sell Cnt Buy Cnt Total Long pct Short pct Empty pct
000651.SZ 13 8 21 93.0% 0.0% 7.0%
Total operation fee: ¥ 63.36
total investment amount: ¥ 100,000.00
final value: ¥ 104,070.64
Total return: inf%
Avg Yearly return: inf%
Skewness: 3.79
Kurtosis: 52.19
Benchmark return: 9.23%
Benchmark Yearly return: 77.74%
------strategy loop_results indicators------
alpha: inf
Beta: inf
Sharp ratio: -inf
Info ratio: 0.005
250 day volatility: 0.003
Max drawdown: 0.80%
peak / valley: 2023-01-30 / 2023-02-06
recovered on: 2023-02-20
===========END OF REPORT=============
回测结果可视化图表如下: