Codeforces-1614 D: Divan and Kostomuksha

Codeforces-1614 D: Divan and Kostomuksha

题目传送门(Easy Version):Codeforces-1614 D1
题目传送门(Hard Version):Codeforces-1614 D2

题目

题目截图

在这里插入图片描述

样例描述

在这里插入图片描述
  对第一个样例,重排序后应为: [ 6 , 2 , 2 , 2 , 3 , 1 ] [6,2,2,2,3,1] [6,2,2,2,3,1]。其中 g c d ( a 1 ) + g c d ( a 1 , a 2 ) + ⋯ + g c d ( a 1 , a 2 , ⋯   , a 6 ) = 14 gcd(a_1)+gcd(a_1,a_2)+\cdots + gcd(a_1,a_2,\cdots,a_6)=14 gcd(a1)+gcd(a1,a2)++gcd(a1,a2,,a6)=14
  对第二个样例,重排序后为 [ 100 , 10 , 10 , 5 , 1 , 3 , 3 , 7 , 42 , 54 ] [100,10,10,5,1,3,3,7,42,54] [100,10,10,5,1,3,3,7,42,54]

题目大意

  给定一个数组 a = [ a i ] i = 1 … n a=[a_i]_{i=1\dots n} a=[ai]i=1n,现在想将其重新排序,使得下面的式子的值最大:
M S = ∑ i = 1 n g c d ( a 1 , a 2 , ⋯   , a i ) MS=\sum_{i=1}^n gcd(a_1,a_2,\cdots,a_i) MS=i=1ngcd(a1,a2,,ai)
  其中, g c d gcd gcd 代表一组数的最大公约数。

题目解析

  让我们考虑如何用 d p dp dp 求解这个问题。整个数组的排序第一个值显然是非常重要的,因为整个 M S MS MS 的计算从左到右,每一个 gcd ⁡ ( a 1 , a 2 , ⋯   , a i ) \gcd(a_1,a_2,\cdots,a_i) gcd(a1,a2,,ai) 都是 a 1 a_1 a1 的一个约数,于是我们可以从 a 1 a_1 a1 入手去思考。显然,若我们把约数从小到大拆开,会发现它们会靠左,以不断缩小的区间形式出现。
  例如第一个例子,我们按约数,可以拆成:
a = [ 6 , 2 , 2 , 2 , 3 , 1 ] 1 ∣ a 1 = [ 6 , 2 , 2 , 2 , 3 , 1 ] 2 ∣ a 1 = [ 6 , 2 , 2 , 2 ] 3 ∣ a 1 = [ 6 ] 6 ∣ a 1 = [ 6 ] { \begin{array}{rl} a &= [6,2,2,2,3,1] \\ 1 | a_1 &= [6,2,2,2,3,1] \\ 2|a_1 &= [6,2,2,2] \\ 3|a_1 &=[6] \\ 6|a_1 &= [6] \end{array} } a1a12a13a16a1=[6,2,2,2,3,1]=[6,2,2,2,3,1]=[6,2,2,2]=[6]=[6]
  我们可以发现,随着区间的靠前,实际上 a 1 a_1 a1 的每一个约数都对应着 [ g c d ( a 1 , a 2 , ⋯   , a i ) ] i = 1 ⋯ n [gcd(a_1,a_2,\cdots,a_i)]_{i=1\cdots n} [gcd(a1,a2,,ai)]i=1n 的某一个区间。于是我们思考如何从 a 1 a_1 a1 的约数入手去解决这个问题。考虑通过动态规划通过从大到小的约数序列进行转移。
  设 d p [ i ] dp[i] dp[i] 代表最小以 i i i 为约数,能够得到的 M S MS MS 值,那么显然只有当目标状态 j j j i i i 的倍数时,我们能够从 j j j i i i 转移。设 c n t [ x ] cnt[x] cnt[x] 是计数约数为 x x x 的数的个数,于是动态转移方程为:
d p i = max ⁡ ( d p i , d p j + i × ( c n t [ i ] − c n t [ j ] ) ) { dp_i=\max(dp_i,dp_j+ i \times(cnt[i]-cnt[j])) \\ } dpi=max(dpi,dpj+i×(cnt[i]cnt[j]))
  上式代表在 d p j dp_j dpj 上增加约数为 i i i 的数的总贡献(需要减去和 j j j 重合的部分)。于是, d p [ d    ∣    a 1 , a 2 , ⋯ a n ] dp[d \; | \; a_1,a_2, \cdots a_n] dp[da1,a2,an] 就是最终答案,其中 ‘ ∣ ’ ‘|’ 代表整除。显然, d p [ 1 ] dp[1] dp[1] 总是最终答案,因此若倒推到最后一个,我们最后输出 d p [ 1 ] dp[1] dp[1] 即可。
  值得注意的是,统计个数和动态规划过程中可以用素数进行更新,而不考虑合数,因为合数可以表示为素数的成绩,因此其实转移的过程中就相当于累乘。

Code

#include<bits/stdc++.h>
using namespace std;

const int maxn = 2e7 + 7;
vector<int> prime;
bool isprime[maxn];
int a[maxn], cnt[maxn];
typedef long long LL;
LL dp[maxn];

void init(int n) {
    memset(isprime, 1, sizeof(isprime));
    for(int i=2; i<=n; ++i) {
        if (isprime[i]) prime.push_back(i);
        for (int j = 0; j < prime.size() && i * prime[j] <= n; ++j) {
            isprime[prime[j] * i] = false;
            if (i % prime[j] == 0) break;
        }
    }
}

int main(){
    int n, mx=1;
    cin >> n;
    for(int i=1; i<=n; ++i)
        cin >> a[i], mx = max(mx, a[i]), ++cnt[a[i]];
    init(mx);
    for(int i=0; i<prime.size(); ++i)
        for(int j=mx/prime[i]; j >= 1; --j)
            cnt[j] += cnt[prime[i] * j];
    for(int i=mx; i>0; --i) {
        dp[i] = 1ll * i * cnt[i];
        for (int j = 0; j < prime.size() && i * prime[j] <= mx; ++j) {
            int v = i * prime[j];
            dp[i] = max(dp[i], dp[v] + 1ll * i * (cnt[i] - cnt[v]));
        }
    }
    cout << dp[1] << endl;
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值