题目描述
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
样例描述
输入:root = [3,9,20,null,null,15,7]
输出:true
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
思路
- 递归法。先写一个获取某结点高度的函数。 判断根结点的高度差是否满足平衡,同时其左右子树是否平衡。 这里不能分开判断! 必须同时满足才是true
代码
class Solution {
public boolean isBalanced(TreeNode root) {
if (root == null) {
return true;
}
//高度差绝对值不大于1,并且 左右子树都平衡 才是true 不能分开判断
//因为可能只是某个结点平衡 但是其左右子树不平衡
if (Math.abs(getHeight(root.left) - getHeight(root.right)) <= 1 && isBalanced(root.left) && isBalanced(root.right))
return true;
return false;
}
//高度就是左右子树较高的加一
public int getHeight(TreeNode p){
if(p == null) {
return 0;
}
return Math.max(getHeight(p.left), getHeight(p.right)) + 1;
}
}