题目描述
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
数字 1-9 在每一行只能出现一次。
数字 1-9 在每一列只能出现一次。
数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)
数独部分空格内已填入了数字,空白格用 ‘.’ 表示。
样例描述
输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
思路
- 递归回溯法。
对于每一个空位,根据布尔数组看每一行、列,九宫格哪些数被填过了,枚举所有可以填的数字。然后继续,如果都不能填,就回溯到上一个状态。
代码
class Solution {
//标记row[i][t]第i行 的是否存在t
boolean row[][] = new boolean[9][9];
boolean col[][] = new boolean[9][9];
//cell通过i/3,j/3坐标来确定存在数字t
boolean cell[][][] = new boolean[3][3][9];
public void solveSudoku(char[][] board) {
//初始化board已经有的数
for (int i = 0; i < 9; i ++ ) {
for (int j = 0; j < 9; j ++ ) {
if (board[i][j] != '.') {
//获取数 减一因为数放在下标0-8
int t = board[i][j] - '1';
//将该数标记在对应的行 列以及九宫格
row[i][t] = col[j][t] = cell[i / 3][j / 3][t] = true;
}
}
}
dfs(board, 0, 0);
}
//通过返回boolean来判断当前分支是否可以,所以不是void
public boolean dfs(char[][] board, int x, int y) {
//对于每一行,从左往右根据列来填
//这一行所有列填完
if (y == 9) {
//换下一行,从第一列开始
x ++;
y = 0;
}
//所有行填完,x到9 说明数独全部填完
if (x == 9) return true;
//如果这个位置已经有数,直接下一个,一定要带return! 因为要标志分支是否可解
if (board[x][y] != '.') return dfs(board, x, y + 1);
//否则是空位 就开始枚举所有可以填的数
for (int num = 0; num < 9; num ++ ) {
//如果这个数不在行、列和九宫格出现过才能填
if (!row[x][num] && !col[y][num] && !cell[x / 3][y / 3][num]) {
//填入数 加'1'恢复数
board[x][y] = (char) (num + '1');
row[x][num] = col[y][num] = cell[x / 3][y / 3][num] = true;
//当前填完后,如果下一个也成功,才说明是正确的
if (dfs(board, x, y + 1)) return true;
//否则,下一个失败的话。 进行回溯,恢复所有状态
board[x][y] = '.';
row[x][num] = col[y][num] = cell[x / 3][y / 3][num] = false;
}
}
//如果上面for循环的都出现在九宫格了,说明当前分支无解,return到上个状态
return false;
}
}