题目链接:669. 修剪二叉搜索树 - 力扣(Leetcode)108. 将有序数组转换为二叉搜索树 - 力扣(Leetcode)538. 把二叉搜索树转换为累加树 - 力扣(Leetcode)
669 修剪二叉搜索树
给你二叉搜索树的根节点 root
,同时给定最小边界low
和最大边界 high
。通过修剪二叉搜索树,使得所有节点的值在[low, high]
中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,如果没有被移除,原有的父代子代关系都应当保留)。 可以证明,存在 唯一的答案 。
所以结果应当返回修剪好的二叉搜索树的新的根节点。注意,根节点可能会根据给定的边界发生改变。
输入:root = [1,0,2], low = 1, high = 2 输出:[1,null,2]
遇到二叉搜索树,先考虑如何利用二叉搜索树的特性进行快速定位。
要点:
1. 需要返回值,因为要遍历整棵树做修改,可以通过递归函数的返回值来修改节点。
2. 遇到非区间内的节点,需要略过去把在区间内的节点接回去。
class Solution:
def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:
if not root: return None
if root.val < low:
return self.trimBST(root.right, low, high)
if root.val > high:
return self.trimBST(root.left, low, high)
if low <= root.val <= high:
root.left = self.trimBST(root.left, low, high)
root.right = self.trimBST(root.right, low, high)
return root
108 将有序数组转为二叉搜索树
给你一个整数数组 nums
,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。
高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
输入:nums = [-10,-3,0,5,9] 输出:[0,-3,9,-10,null,5] 解释:[0,-10,5,null,-3,null,9] 也将被视为正确答案:
要记得构造二叉树的基本操作。
关于选择中心节点和分割左子点区间和右子点区间:
取数组中间元素的位置,不难写出
int mid = (left + right) / 2;
,这么写其实有一个问题,就是数值越界,例如left和right都是最大int,这么操作就越界了,在二分法中尤其需要注意!可以写为 int mid = left + (left + right) / 2
class Solution:
def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
return self.traversal(nums, 0, len(nums)-1)
def traversal(self, nums:List[int], left:int, right:int)->TreeNode:
if left > right:
return None
mid = left + (right - left) // 2
mid_root = TreeNode(nums[mid])
mid_root.left = self.traversal(nums, left, mid - 1)
mid_root.right = self.traversal(nums, mid + 1, right)
return mid_root
538 把二叉搜索树转换为累加树
给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node
的新值等于原树中大于或等于 node.val
的值之和。
提醒一下,二叉搜索树满足下列约束条件:
- 节点的左子树仅包含键 小于 节点键的节点。
- 节点的右子树仅包含键 大于 节点键的节点。
- 左右子树也必须是二叉搜索树。
输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8] 输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]
从示例来看,输出的累加树是从中序遍历后的二叉搜索树的右侧开始累加的,也就是说累加的顺序是反向中序遍历——右中左。中节点的处理逻辑就是让cur的数值加上前一个节点的数值(双指针)。
class Solution:
def __init__(self):
self.pre = TreeNode()#放进convertBST()里也可以
def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
self.traversal(root)
return root
def traversal(self, root:TreeNode)->TreeNode:
#因为要遍历整棵树,所以无需返回值来做调整
if not root:
return None
self.traversal(root.right)
root.val += self.pre.val
self.pre = root
self.traversal(root.left)