STM32运行深度学习指南基础篇(4)(STM32CubeMX.AI+Tensorflow)
在上一篇文章中我们已经有训练好的tflite模型,接下来我们要在Keil中实现,如果是Clion的朋友可以跳转至这篇文章
STM32运行深度学习指南基础篇(3)(STM32CubeMX.AI+Tensorflow)
在我们新建好的STM32CubeMX中勾选,我们的AI包:

打开串口:

激活AI模块,载入模型,点击analyze

我们修改生成的main代码
在/* USER CODE BEGIN Includes / …/ USER CODE END Includes */中添加需要的头文件
/* USER CODE BEGIN Includes */
#include "ai_platform.h"
#include "network.h"
#include "network_data.h"
#include "stdio.h"
/* USER CODE END Includes */
在/* USER CODE BEGIN PTD /…/ USER CODE END PTD */,添加printf相关函数
/* USER CODE BEGIN PTD */
#ifdef __GNUC__
#define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
#define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif
PUTCHAR_PROTOTYPE
{
HAL_UART_Transmit(&huart1,(uint8_t*)&ch, 1, 0xFFFF);
return ch;
}
/* USER CODE END PTD */
在/* USER CODE BEGIN PV /…/ USER CODE END PV */中添加需要的相关变量
/* USER CODE BEGIN PV */
/* 输入数据 */
float aiInData[16][AI_NETWORK_IN_1_SIZE] = {
{
1, 1, 1, 0},
{
1,</