(一)Ray:Tune整定模型超参数

本文介绍了Ray Tune模块,它是一个用于超参数调优的工具。通过构建trials并使用Scheduler如PBT或AsyncHyperBand进行调度,Ray Tune帮助优化模型训练。以mnist-pytorch模型为例,详细阐述了创建trials、选择Scheduler和运行试验的过程,以及如何分析数据以找到最佳超参数配置。
摘要由CSDN通过智能技术生成

Ray Tune 模块

Tune

Tune是一个超参数整定模块,他以’trials’来构建起每一次尝试。为’trials’利用Scheduler作为调度器。可以使用包括PBT,AsyncHyperBand在内的多种超参数整定方法。

如何使用?

根据上述所述,分为以下几步:

  1. 根据自己的需求构建一个trials,可理解为一个训练epoch,该trials需继承Tune.Trainable
  2. 选择合适的Schedulers
  3. 调用ray.tune.run(),其中trials作为run的run_or_experiment 传入

例子:mnist-pytorch模型训练超参数整定

借助mnist-pytorch官方例子进行解释

1.构建一个trial

在本例中,一个trial具有以下几步

  1. 训练一轮
  2. 评估此轮模型效果
  3. 返回评估指标
class TrainMNIST(tune.Trainable):
    def _setup(self, config):
        # 类似于__init__函数,用于初始化相关配置
        # 1.读数据:self.data_loader = ... 
        # 2.构建模型 : self.model = ...
        # 3.优化器: self.optimizer = ...
        #... 具体源码见官方教程

    def _train(self):
        #训练模型
        train(
            self.model,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值