题目描述:
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> ans;
//对数组进行排序
sort(nums.begin(),nums.end());
//外层循环找第三个数
for(int i = 0; i < nums.size();i++){
//去重第三个数
if(i > 0 && nums[i] == nums[i - 1]) continue;
int l = i + 1,r = nums.size() - 1;
int target = 0 - nums[i];
//寻找第一个数和第二个数
while(l < r){
if(target == nums[l] + nums[r]){
ans.push_back({nums[i],nums[l],nums[r]});
//去重操作
while(l < r && nums[l] == nums[l + 1]) l++;
while(l < r && nums[r] == nums[r - 1]) r--;
l++,r--;
}else if(nums[l] + nums[r] < target)
l++;
else
r--;
}
}
return ans;
}
};
需要找出三数之和为 0 的解,不妨先考虑如何求两数之和为 0 的解。在一个nums数组中(如下图所示) ,要求不相同的解,那么先将数组排序,然后使用双下标法从两边向中间寻找符合条件的组合。当第一次循环时 nums[l] = -2 , nums[r] = 2 ,符合两数之和为 0 的条件,将答案存储到答案数组之中,l++ ,r--,此时 nums[l] = -1, 而nums[r] 与 nums[r + 1]值相同,因为答案不能存在相同的答案,因此 r需要再次 r-- 到 nums[r] == 1的位置,nums[l] = -1 , nums[r] = 1 ,符合两数之和为 0 的条件,将答案存储到答案数组之中,l++ ,r--;因为此时nums[l] == nums[l - 1],因此 l++ 到nums[l] = 0,此时 l == r 循环结束。那么推广到三数之和,只需要再在两数之和外加一层循环寻找第三个数,而两数之和的值 为 0 减去 第三个数。