第一题
标题:换零钞
x星球的钞票的面额只有:100元,5元,2元,1元,共4种。
小明去x星旅游,他手里只有2张100元的x星币,太不方便,恰好路过x星银行就去换零钱。
小明有点强迫症,他坚持要求200元换出的零钞中2元的张数刚好是1元的张数的10倍,
剩下的当然都是5元面额的。
银行的工作人员有点为难,你能帮助算出:在满足小明要求的前提下,最少要换给他多少张钞票吗?
(5元,2元,1元面额的必须都有,不能是0)
答案:74
#include<bits/stdc++.h>
using namespace std;
int main()
{
int mmin = INT_MAX;
int mmini = INT_MAX;
for(int i = 1;i<40;i++)
{
if(200-i*21<=0) break;
if((200-i*21)%5==0)
{
if(i*11+(200-i*21)/5<mmin)
{
mmini = i;
mmin = i*11+(200-i*21)/5;
}
}
}
cout<<mmini<<endl;
cout<<mmin<<endl;
return 0;
}
第二题
标题:激光样式
x星球的盛大节日为增加气氛,用30台机光器一字排开,向太空中打出光柱。
安装调试的时候才发现,不知什么原因,相邻的两台激光器不能同时打开!
国王很想知道,在目前这种bug存在的情况下,一共能打出多少种激光效果?
显然,如果只有3台机器,一共可以成5种样式,即:
全都关上(sorry, 此时无声胜有声,这也算一种)
开一台,共3种
开两台,只1种
30台就不好算了,国王只好请你帮忙了。
要求提交一个整数,表示30台激光器能形成的样式种数。
答案:2178309
#include<bits/stdc++.h>
using namespace std;
const int num = 30;
long long dp[num][2];
int main()
{
dp[0][0] = 1;
dp[0][1] = 1;
for(int i = 1;i<num;i++)
{
dp[i][0] = dp[i-1][0]+dp[i-1][1];
dp[i][