题目描述:
Problem Description
杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer)。
杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍,更安全地服务大众。
不吉利的数字为所有含有4或62的号码。例如:
62315 73418 88914
都属于不吉利号码。但是,61152虽然含有6和2,但不是62连号,所以不属于不吉利数字之列。
你的任务是,对于每次给出的一个牌照区间号,推断出交管局今次又要实际上给多少辆新的士车上牌照了。
Input
输入的都是整数对n、m(0<n≤m<1000000),如果遇到都是0的整数对,则输入结束。
Output
对于每个整数对,输出一个不含有不吉利数字的统计个数,该数值占一行位置。
Sample Input
1 100
0 0
Sample Output
80
思路:
这个题用到数位dp(动态规划)的思想,详解请参考博文https://blog.csdn.net/wust_zzwh/article/details/52100392。
“数位dp”归根结底就以深度优先搜索的方式,枚举某区间内的数字,并求解出符合约束条件的数字的个数。
以统计765范围内不包含“4”和“62的数字的个数为例。
我们先把整形数字765变为字符串,写到字符型数组中。以深度搜索的方式来统计0-765范围内符合要求的数字的个数。
设置两个指针,前位指针pre和当前位指针pos,再深搜过程中,pre指向当前位的上一位,pos则指向当前位。
从最高位开始深搜,如果发现前位指针pre对应的值是“6”,当前位指针pos对应的值是“2”,或者pos对应的值是“4”,说明这个数是不合法的,需要更换当前位的值,或者是回溯到上一位并更换上一位的值,然后继续从相应的位置深搜。如果从最高位一直深搜到最低位而没有出现“62”或“4”,说明我们已经找到了一串符合要求的数字,纳入统计。
另外需要注意,从最高位百位开始,如果百位是“7”,那么十位只能是0-6;如果百位是0-6,那么十位就可以是0-9。可以看出,下一位的选择范围有时会受到上一位的影响,因此需要判断处理。
假设题目给定的范围是m-n,分别计算出m中不包含“4”和“62”的数字个数和n中不包含“4”和“62”的个数,再把这两个数相减,就得到我们想要的结果。
实现(C++):
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int a[20];
int dp[20][2];
int dfs(int pos,int pre,int sta,bool limit)
{
if(pos==-1) return 1;
if(!limit && dp[pos][sta]!=-1) return dp[pos][sta];
int up=limit ? a[pos] : 9;
int tmp=0;
for(int i=0;i<=up;i++)
{
if(pre==6 && i==2)continue;
if(i==4) continue;//都是保证枚举合法性
tmp+=dfs(pos-1,i,i==6,limit && i==a[pos]);
}
if(!limit) dp[pos][sta]=tmp;
return tmp;
}
int solve(int x)
{
int pos=0;
while(x)
{
a[pos++]=x%10;
x/=10;
}
return dfs(pos-1,-1,0,true);
}
int main()
{
int le,ri;
//memset(dp,-1,sizeof dp);可优化
while(~scanf("%d%d",&le,&ri) && le+ri)
{
memset(dp,-1,sizeof dp);
printf("%d\n",solve(ri)-solve(le-1));
}
return 0;
}
另外附上数位dp的模板:
typedef long long ll;
int a[20];
ll dp[20][state];//不同题目状态不同
ll dfs(int pos,/*state变量*/,bool lead/*前导零*/,bool limit/*数位上界变量*/)//不是每个题都要判断前导零
{
//递归边界,既然是按位枚举,最低位是0,那么pos==-1说明这个数我枚举完了
if(pos==-1) return 1;/*这里一般返回1,表示你枚举的这个数是合法的,那么这里就需要你在枚举时必须每一位都要满足题目条件,也就是说当前枚举到pos位,一定要保证前面已经枚举的数位是合法的。不过具体题目不同或者写法不同的话不一定要返回1 */
//第二个就是记忆化(在此前可能不同题目还能有一些剪枝)
if(!limit && !lead && dp[pos][state]!=-1) return dp[pos][state];
/*常规写法都是在没有限制的条件记忆化,这里与下面记录状态是对应,具体为什么是有条件的记忆化后面会讲*/
int up=limit?a[pos]:9;//根据limit判断枚举的上界up;这个的例子前面用213讲过了
ll ans=0;
//开始计数
for(int i=0;i<=up;i++)//枚举,然后把不同情况的个数加到ans就可以了
{
if() ...
else if()...
ans+=dfs(pos-1,/*状态转移*/,lead && i==0,limit && i==a[pos]) //最后两个变量传参都是这样写的
/*这里还算比较灵活,不过做几个题就觉得这里也是套路了
大概就是说,我当前数位枚举的数是i,然后根据题目的约束条件分类讨论
去计算不同情况下的个数,还有要根据state变量来保证i的合法性,比如题目
要求数位上不能有62连续出现,那么就是state就是要保存前一位pre,然后分类,
前一位如果是6那么这意味就不能是2,这里一定要保存枚举的这个数是合法*/
}
//计算完,记录状态
if(!limit && !lead) dp[pos][state]=ans;
/*这里对应上面的记忆化,在一定条件下时记录,保证一致性,当然如果约束条件不需要考虑lead,这里就是lead就完全不用考虑了*/
return ans;
}
ll solve(ll x)
{
int pos=0;
while(x)//把数位都分解出来
{
a[pos++]=x%10;//个人老是喜欢编号为[0,pos),看不惯的就按自己习惯来,反正注意数位边界就行
x/=10;
}
return dfs(pos-1/*从最高位开始枚举*/,/*一系列状态 */,true,true);//刚开始最高位都是有限制并且有前导零的,显然比最高位还要高的一位视为0嘛
}
int main()
{
ll le,ri;
while(~scanf("%lld%lld",&le,&ri))
{
//初始化dp数组为-1,这里还有更加优美的优化,后面讲
printf("%lld\n",solve(ri)-solve(le-1));
}
}
注:解题思路,实现代码,算法模版均参考自博文https://blog.csdn.net/wust_zzwh/article/details/52100392(侵删),在这里向博文作者大佬致敬。